Gu Yijun, Guo Jianxia, Pal Ajay, Pan Su-Shu, Zimniak Piotr, Singh Shivendra V, Ji Xinhua
Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA.
Biochemistry. 2004 Dec 21;43(50):15673-9. doi: 10.1021/bi048757g.
The crystal structure of human class alpha glutathione (GSH) S-transferase A3-3 (hGSTA3-3) in complex with GSH was determined at 2.4 A. Despite considerable amino acid sequence identity with other human class alpha GSTs (e.g., hGSTA1-1), hGSTA3-3 is unique due to its exceptionally high steroid double bond isomerase activity for the transformation of Delta(5)-androstene-3,17-dione (Delta(5)-AD) to Delta(4)-androstene-3,17-dione. A comparative analysis of the active centers of hGSTA1-1 and hGSTA3-3 reveals that residues in positions 12 and 208 may contribute to their disparate isomerase activity toward Delta(5)-AD. Substitution of these two residues of hGSTA3-3 with the corresponding residues in hGSTA1-1 followed by kinetic characterization of the wild-type and the mutant enzymes supported this prediction. On the basis of our model of the hGSTA3-3.GSH.Delta(5)-AD ternary complex and available biochemical data, we propose that the thiolate group of deprotonated GSH (GS(-)) serves as a base to initiate the reaction by accepting a proton from the steroid and the nonionized hydroxyl group of catalytic residue Y9 (HO-Y9) functions as part of a proton-conducting wire to transfer a proton back to the steroid. Residue R15 may function to stabilize the deprotonated thiolate group of GSH (GS(-)), and a GSH-bound water molecule may donate a hydrogen bond to the 3-keto group of Delta(5)-AD and thus help the thiolate of GS(-) to initiate the proton transfer and the subsequent stabilization of the reaction intermediate.
人类α类谷胱甘肽(GSH)S-转移酶A3-3(hGSTA3-3)与GSH复合物的晶体结构在2.4埃分辨率下得以确定。尽管hGSTA3-3与其他人类α类谷胱甘肽转移酶(如hGSTA1-1)有相当程度的氨基酸序列同一性,但因其对Δ⁵-雄烯-3,17-二酮(Δ⁵-AD)转化为Δ⁴-雄烯-3,17-二酮具有极高的类固醇双键异构酶活性而独具特色。对hGSTA1-1和hGSTA3-3活性中心的比较分析表明,第12位和第208位的残基可能导致它们对Δ⁵-AD的异构酶活性不同。将hGSTA3-3的这两个残基替换为hGSTA1-1中的相应残基,随后对野生型和突变型酶进行动力学表征,证实了这一预测。基于我们构建的hGSTA3-3.GSH.Δ⁵-AD三元复合物模型以及现有的生化数据,我们提出去质子化的GSH(GS⁻)的硫醇盐基团作为碱,通过从类固醇接受质子来启动反应,催化残基Y9的非离子化羟基(HO-Y9)作为质子传导通路的一部分,将质子转移回类固醇。残基R15可能起到稳定GSH去质子化硫醇盐基团(GS⁻)的作用,与GSH结合的水分子可能向Δ⁵-AD的3-酮基提供氢键,从而帮助GS⁻的硫醇盐启动质子转移并稳定随后的反应中间体。