Phatnani Hemali P, Jones Janice C, Greenleaf Arno L
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
Biochemistry. 2004 Dec 21;43(50):15702-19. doi: 10.1021/bi048364h.
CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO(4) residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957-24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus.
酿酒酵母的CTD激酶I(CTDK-I)是延长的RNA聚合酶II上C末端重复结构域(CTD)正常磷酸化所必需的。为了阐明这种激酶及其产生的超磷酸化CTD(磷酸化CTD)所发挥的细胞作用,我们系统地在酵母提取物中寻找与CTDK-I在体外产生的磷酸化CTD结合的蛋白质。最初,我们结合远缘Western印迹和磷酸化CTD亲和色谱法,发现了一组与多种核功能有关的新型磷酸化CTD结合蛋白(PCAP)。我们确定了其中一些PCAP的磷酸化CTD相互作用结构域,并且在几个测试案例中(即Set2、Ssd1和Hrr25)提供了证据,证明磷酸化CTD结合在体内具有重要功能。利用表面等离子体共振(BIACORE)分析,我们发现这些PCAP和其他PCAP的重组形式优先结合在每个七个氨基酸重复序列的第2和第5位带有SerPO(4)残基的CTD重复肽段,这与CTDK-I在体外的位置特异性一致[琼斯,J.C.等人(2004年)《生物化学杂志》279卷,24957 - 24964页]。随后,我们使用具有三个双磷酸化重复序列(2,5P)的合成CTD肽作为亲和基质,极大地扩展了我们对PCAPs的搜索范围。这导致鉴定出约100种PCAP和相关蛋白,它们代表了广泛的功能(例如,转录、RNA加工、染色质结构、DNA代谢、蛋白质合成与周转、RNA降解、snRNA修饰和snoRNP生物发生)。这些PCAP和相关蛋白的多样性表明,Pol II延伸与其他过程之间存在意想不到的多种联系,从概念上扩展了CTD磷酸化在细胞核功能组织中的作用。