Suppr超能文献

扩展CTD激酶I和RNA聚合酶II的功能谱:酵母蛋白质组中新型磷酸化CTD结合蛋白

Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome.

作者信息

Phatnani Hemali P, Jones Janice C, Greenleaf Arno L

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Biochemistry. 2004 Dec 21;43(50):15702-19. doi: 10.1021/bi048364h.

Abstract

CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO(4) residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957-24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus.

摘要

酿酒酵母的CTD激酶I(CTDK-I)是延长的RNA聚合酶II上C末端重复结构域(CTD)正常磷酸化所必需的。为了阐明这种激酶及其产生的超磷酸化CTD(磷酸化CTD)所发挥的细胞作用,我们系统地在酵母提取物中寻找与CTDK-I在体外产生的磷酸化CTD结合的蛋白质。最初,我们结合远缘Western印迹和磷酸化CTD亲和色谱法,发现了一组与多种核功能有关的新型磷酸化CTD结合蛋白(PCAP)。我们确定了其中一些PCAP的磷酸化CTD相互作用结构域,并且在几个测试案例中(即Set2、Ssd1和Hrr25)提供了证据,证明磷酸化CTD结合在体内具有重要功能。利用表面等离子体共振(BIACORE)分析,我们发现这些PCAP和其他PCAP的重组形式优先结合在每个七个氨基酸重复序列的第2和第5位带有SerPO(4)残基的CTD重复肽段,这与CTDK-I在体外的位置特异性一致[琼斯,J.C.等人(2004年)《生物化学杂志》279卷,24957 - 24964页]。随后,我们使用具有三个双磷酸化重复序列(2,5P)的合成CTD肽作为亲和基质,极大地扩展了我们对PCAPs的搜索范围。这导致鉴定出约100种PCAP和相关蛋白,它们代表了广泛的功能(例如,转录、RNA加工、染色质结构、DNA代谢、蛋白质合成与周转、RNA降解、snRNA修饰和snoRNP生物发生)。这些PCAP和相关蛋白的多样性表明,Pol II延伸与其他过程之间存在意想不到的多种联系,从概念上扩展了CTD磷酸化在细胞核功能组织中的作用。

相似文献

2
Identifying phosphoCTD-associating proteins.
Methods Mol Biol. 2004;257:17-28. doi: 10.1385/1-59259-750-5:017.
5
CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
Genes Dev. 2010 Oct 15;24(20):2303-16. doi: 10.1101/gad.1968210.
7
The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II.
J Biol Chem. 2003 Mar 14;278(11):8897-903. doi: 10.1074/jbc.M212134200. Epub 2003 Jan 2.
8
C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.
J Biol Chem. 2004 Jun 11;279(24):24957-64. doi: 10.1074/jbc.M402218200. Epub 2004 Mar 26.
9
A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II.
PLoS One. 2013 Apr 16;8(4):e60909. doi: 10.1371/journal.pone.0060909. Print 2013.
10
Phosphorylation and functions of the RNA polymerase II CTD.
Genes Dev. 2006 Nov 1;20(21):2922-36. doi: 10.1101/gad.1477006.

引用本文的文献

2
Distinctive interactomes of RNA polymerase II phosphorylation during different stages of transcription.
iScience. 2023 Aug 9;26(9):107581. doi: 10.1016/j.isci.2023.107581. eCollection 2023 Sep 15.
3
Possible Contribution of Alternative Transcript Isoforms in Mature Biofilm Growth Phase of .
Indian J Microbiol. 2022 Dec;62(4):583-601. doi: 10.1007/s12088-022-01036-7. Epub 2022 Aug 27.
4
PHRF1 promotes migration and invasion by modulating ZEB1 expression.
PLoS One. 2020 Jul 30;15(7):e0236876. doi: 10.1371/journal.pone.0236876. eCollection 2020.
5
CDK12 Activity-Dependent Phosphorylation Events in Human Cells.
Biomolecules. 2019 Oct 22;9(10):634. doi: 10.3390/biom9100634.
6
Deletions associated with stabilization of the Top1 cleavage complex in yeast are products of the nonhomologous end-joining pathway.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22683-22691. doi: 10.1073/pnas.1914081116. Epub 2019 Oct 21.
7
In vitro analysis of RNA polymerase II elongation complex dynamics.
Genes Dev. 2019 May 1;33(9-10):578-589. doi: 10.1101/gad.324202.119. Epub 2019 Mar 7.
8
Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner.
Nat Chem Biol. 2019 Feb;15(2):123-131. doi: 10.1038/s41589-018-0194-1. Epub 2018 Dec 31.
9
Regulation of ATR activity via the RNA polymerase II associated factors CDC73 and PNUTS-PP1.
Nucleic Acids Res. 2019 Feb 28;47(4):1797-1813. doi: 10.1093/nar/gky1233.
10
Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium.
Transcription. 2019 Apr;10(2):91-110. doi: 10.1080/21541264.2018.1535211. Epub 2018 Oct 22.

本文引用的文献

4
Ssu72 Is an RNA polymerase II CTD phosphatase.
Mol Cell. 2004 May 7;14(3):387-94. doi: 10.1016/s1097-2765(04)00235-7.
5
C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.
J Biol Chem. 2004 Jun 11;279(24):24957-64. doi: 10.1074/jbc.M402218200. Epub 2004 Mar 26.
6
Identifying phosphoCTD-associating proteins.
Methods Mol Biol. 2004;257:17-28. doi: 10.1385/1-59259-750-5:017.
7
Global mapping of the yeast genetic interaction network.
Science. 2004 Feb 6;303(5659):808-13. doi: 10.1126/science.1091317.
8
Molecular cross-talk between the transcription, translation, and nonsense-mediated decay machineries.
J Cell Sci. 2004 Feb 29;117(Pt 6):899-906. doi: 10.1242/jcs.00933. Epub 2004 Feb 3.
9
Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex.
Mol Cell Biol. 2004 Feb;24(4):1721-35. doi: 10.1128/MCB.24.4.1721-1735.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验