Pastenes Claudio, Pimentel Paula, Lillo Jacob
Facultad de Ciencias Agronómicas, Universidad de Chile, Departamento de Producción Agrícola, Laboratorio de Fisiología del Estrés en Plantas, Casilla 1004, Santiago, Chile.
J Exp Bot. 2005 Jan;56(411):425-33. doi: 10.1093/jxb/eri061. Epub 2004 Dec 13.
Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.
植物中的光抑制取决于被吸收的光能超过光化学所能利用的光能的程度,并且预计随着环境限制因素限制二氧化碳同化作用而增加。水分胁迫会导致气孔关闭,限制叶绿体羧化位点的碳供应,从而导致光合机构,特别是光系统II(PSII)过度激发。植物已经进化出一些机制来防止光抑制,例如非光化学能量耗散、叶绿素浓度变化、叶绿体运动、清除活性氧能力的增强以及叶片运动或避日性,避免直接暴露在阳光下。在菜豆(Phaseolus vulgaris L.)中,避日性似乎是植物避免光抑制的一个重要特征。随着水势下降,叶片运动的程度增加,减少了光截获并维持了高比例的开放PSII反应中心。以恢复F(v)/F(m)的能力来衡量,水分胁迫下菜豆的光抑制并不高于水分充足的植株,尽管气孔关闭,但叶片温度仍保持在环境温度以下。限制运动的菜豆叶片会升高叶片温度并降低qP、D1蛋白含量以及暗适应后恢复F(v)/F(m)的能力,水分胁迫植株中的这种变化程度更高。所呈现的数据表明,尽管避日性在水分胁迫下具有保护作用,但通过减少光截获,它会影响水分充足的植株全天维持高二氧化碳同化率的能力。