Williams J T, Blangero J
Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA.
Ann Hum Genet. 2004 Nov;68(Pt 6):620-32. doi: 10.1046/j.1529-8817.2004.00128.x.
We determine the power of variance component linkage analysis in the case of discrete, dichotomous traits analyzed under a classical liability threshold model. For simplicity we consider randomly ascertained samples and an additive model of variation incorporating a qtl, residual additive genetic factors, and individual-specific random environmental effects. We derive an expression for the power of variance component linkage analysis in arbitrary relative pairs, and compare the power of discrete and quantitative trait linkage analysis in the specific case of sibpairs. The predicted sample sizes required in linkage analysis of sibpairs are confirmed by analysis of simulated data. Unlike the affected-sibpair method, the power of discrete trait variance component analysis increases with trait prevalence. The relative efficiency of a discrete trait for linkage analysis increases with population trait prevalence, but does not exceed about 40% and is typically much less.
我们确定了在经典易患性阈值模型下分析离散二分类性状时方差成分连锁分析的效能。为简化起见,我们考虑随机确定的样本以及包含一个数量性状基因座(QTL)、残余加性遗传因素和个体特异性随机环境效应的加性变异模型。我们推导出任意相对对中方差成分连锁分析效能的表达式,并在同胞对的特定情况下比较离散性状和数量性状连锁分析的效能。通过对模拟数据的分析,证实了同胞对连锁分析所需的预测样本量。与患病同胞对法不同,离散性状方差成分分析的效能随性状患病率增加而增加。离散性状用于连锁分析的相对效率随群体性状患病率增加而增加,但不超过约40%,且通常远低于此。