Suppr超能文献

Avian glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues.

作者信息

Zhou G, Broyles S S, Dixon J E, Zalkin H

机构信息

Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907.

出版信息

J Biol Chem. 1992 Apr 15;267(11):7936-42.

PMID:1560022
Abstract

Avian glutamine phosphoribosylpyrophosphate amidotransferase contains an NH2-terminal propetide-like sequence. NH2-terminal sequence analysis of immunoaffinity purified enzyme from chicken liver indicates that the propeptide is processed and the mature enzyme starts with Cys. Propeptide processing was investigated by site-directed mutagenesis using a system for expression in HeLa cells. Glutamine-dependent activity and processing were abolished by replacement of the conserved cysteine at position 1, whereas NH3-dependent activity was retained. Cys1 is thus inferred to have a role in glutamine-dependent activity and in propeptide processing. Inactive, insoluble enzymes in which the propeptide was not processed were obtained as a result of replacements of cysteines 415 and 488. Cysteine residues at positions 415 and 488 are inferred to be ligands to an Fe-S cluster on the basis of sequence similarity to the enzyme from Bacillus subtilis. Mutation of Cys269 and Cys295 led to loss of enzyme activity and propeptide processing, although solubility was unchanged. The results suggest that incorporation of an Fe-S cluster is needed for native structure, resultant propeptide processing, and glutamine-dependent activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验