Purwanto Wirawan, Zhang Shiwei
Department of Physics, The College of William and Mary, Williamsburg, Virginia 23187, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056702. doi: 10.1103/PhysRevE.70.056702. Epub 2004 Nov 9.
We formulate a quantum Monte Carlo (QMC) method for calculating the ground state of many-boson systems. The method is based on a field-theoretical approach, and is closely related to existing fermion auxiliary-field QMC methods which are applied in several fields of physics. The ground-state projection is implemented as a branching random walk in the space of permanents consisting of identical single-particle orbitals. Any single-particle basis can be used, and the method is in principle exact. We illustrate this method with a trapped atomic boson gas, where the atoms interact via an attractive or repulsive contact two-body potential. We choose as the single-particle basis a real-space grid. We compare with exact results in small systems and arbitrarily sized systems of untrapped bosons with attractive interactions in one dimension, where analytical solutions exist. We also compare with the corresponding Gross-Pitaevskii (GP) mean-field calculations for trapped atoms, and discuss the close formal relation between our method and the GP approach. Our method provides a way to systematically improve upon GP while using the same framework, capturing interaction and correlation effects with a stochastic, coherent ensemble of noninteracting solutions. We discuss various algorithmic issues, including importance sampling and the back-propagation technique for computing observables, and illustrate them with numerical studies. We show results for systems with up to N approximately 400 bosons.
我们制定了一种用于计算多玻色子系统基态的量子蒙特卡罗(QMC)方法。该方法基于场论方法,与应用于多个物理领域的现有费米子辅助场QMC方法密切相关。基态投影在由相同单粒子轨道组成的永久行列式空间中实现为分支随机游走。可以使用任何单粒子基,并且该方法原则上是精确的。我们用捕获的原子玻色子气体来说明这种方法,其中原子通过吸引或排斥的接触两体势相互作用。我们选择实空间网格作为单粒子基。我们将其与小系统以及一维中有吸引相互作用的非捕获玻色子的任意大小系统的精确结果进行比较,在一维中有吸引相互作用的情况下存在解析解。我们还将其与捕获原子的相应格罗斯 - 皮塔耶夫斯基(GP)平均场计算进行比较,并讨论我们的方法与GP方法之间密切的形式关系。我们的方法提供了一种在使用相同框架的同时系统地改进GP的方法,通过非相互作用解的随机、相干系综来捕获相互作用和关联效应。我们讨论了各种算法问题,包括重要性抽样和用于计算可观测量的反向传播技术,并用数值研究来说明它们。我们展示了多达N约为400个玻色子的系统的结果。