Suppr超能文献

一种基于判别离散余弦变换特征提取的面部和掌纹识别方法。

A face and palmprint recognition approach based on discriminant DCT feature extraction.

作者信息

Jing Xiao-Yuan, Zhang David

机构信息

Bio-Computing Research Center and Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2004 Dec;34(6):2405-15. doi: 10.1109/tsmcb.2004.837586.

Abstract

In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.

摘要

在图像处理与识别领域,离散余弦变换(DCT)和线性判别是两种广泛使用的技术。基于它们,我们在本文中提出了一种新的面部和掌纹识别方法。它首先使用二维可分性判断来选择具有良好线性可分性的DCT频带。然后从所选频带中,通过改进的Fisherface方法提取线性判别特征,并由最近邻分类器进行分类。我们详细分析了我们方法在特征提取方面的理论优势。在面部数据库和掌纹数据库上的实验表明,与当前最先进的线性判别方法相比,我们的方法获得了更好的分类性能。它可以显著提高面部和掌纹数据的识别率,并有效地降低特征空间的维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验