Jakopitsch Christa, Wanasinghe Anuruddhika, Jantschko Walter, Furtmüller Paul G, Obinger Christian
Department of Chemistry, Division of Biochemistry, Metalloprotein Research Group, BOKU, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
J Biol Chem. 2005 Mar 11;280(10):9037-42. doi: 10.1074/jbc.M413317200. Epub 2005 Jan 6.
With the exception of catalase-peroxidases, heme peroxidases show no significant ability to oxidize hydrogen peroxide and are trapped and inactivated in the compound III form by H2O2 in the absence of one-electron donors. Interestingly, some KatG variants, which lost the catalatic activity, form compound III easily. Here, we compared the kinetics of interconversion of ferrous enzymes, compound II and compound III of wild-type Synechocystis KatG, the variant Y249F, and horseradish peroxidase (HRP). It is shown that dioxygen binding to ferrous KatG and Y249F is reversible and monophasic with apparent bimolecular rate constants of (1.2 +/- 0.3) x 10(5) M(-1) s(-1) and (1.6 +/- 0.2) x 10(5) M(-1) s(-1) (pH 7, 25 degrees C), similar to HRP. The dissociation constants (KD) of the ferrous-dioxygen were calculated to be 84 microm (wild-type KatG) and 129 microm (Y249F), higher than that in HRP (1.9 microm). Ferrous Y249F and HRP can also heterolytically cleave hydrogen peroxide, forming water and an oxoferryl-type compound II at similar rates ((2.4 +/- 0.3) x 10(5) M(-1) s(-1) and (1.1 +/- 0.2) x 10(5) M(-1) s(-1) (pH 7, 25 degrees C)). Significant differences were observed in the H2O2-mediated conversion of compound II to compound III as well as in the spectral features of compound II. When compared with HRP and other heme peroxidases, in Y249F, this reaction is significantly faster ((1.2 +/- 0.2) x 10(4) M(-1) s(-1))). Ferrous wild-type KatG was also rapidly converted by hydrogen peroxide in a two-phasic reaction via compound II to compound III (approximately 2.0 x 10(5) M(-1) s(-1)), the latter being also efficiently transformed to ferric KatG. These findings are discussed with respect to a proposed mechanism for the catalatic activity.
除了过氧化氢酶过氧化物酶外,血红素过氧化物酶氧化过氧化氢的能力并不显著,并且在没有单电子供体的情况下,会被过氧化氢捕获并以化合物III的形式失活。有趣的是,一些失去催化活性的KatG变体很容易形成化合物III。在此,我们比较了野生型集胞藻KatG、变体Y249F和辣根过氧化物酶(HRP)的亚铁酶、化合物II和化合物III相互转化的动力学。结果表明,氧气与亚铁KatG和Y249F的结合是可逆的且为单相,表观双分子速率常数分别为(1.2±0.3)×10⁵ M⁻¹ s⁻¹和(1.6±0.2)×10⁵ M⁻¹ s⁻¹(pH 7,25℃),与HRP相似。亚铁 - 氧气的解离常数(KD)经计算分别为84 μM(野生型KatG)和129 μM(Y249F),高于HRP中的解离常数(1.9 μM)。亚铁Y249F和HRP也能以相似的速率((2.4±0.3)×10⁵ M⁻¹ s⁻¹和(1.1±0.2)×10⁵ M⁻¹ s⁻¹(pH 7,25℃))异裂过氧化氢,形成水和一种氧合铁(IV)型化合物II。在过氧化氢介导的化合物II向化合物III的转化以及化合物II的光谱特征方面观察到了显著差异。与HRP和其他血红素过氧化物酶相比,在Y249F中,该反应明显更快((1.2±0.2)×10⁴ M⁻¹ s⁻¹)。亚铁野生型KatG也通过过氧化氢在一个双相反应中经由化合物II快速转化为化合物III(约2.0×10⁵ M⁻¹ s⁻¹),后者也能有效地转化为高铁KatG。针对所提出的催化活性机制对这些发现进行了讨论。