Suppr超能文献

血清蛋白图谱及人工神经网络软件在乳腺癌诊断中的应用

[Diagnostic application of serum protein pattern and artificial neural network software in breast cancer].

作者信息

Hu Yue, Zhang Su-Zhan, Yu Jie-Kai, Liu Jian, Zheng Shu, Hu Xun

机构信息

Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310-009, P.R. China.

出版信息

Ai Zheng. 2005 Jan;24(1):67-71.

Abstract

BACKGROUND & OBJECTIVE: The progress in proteomics provides a novel platform for early diagnosis of cancer, and screening for new tumor biomarkers. This study was designed to develop and evaluate a diagnostic model of breast cancer with surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) ProteinChip array technology and artificial neural network software.

METHODS

SELDI-TOF-MS ProteinChip was used to detect serum protein patterns of 49 patients with breast cancer, and 33 healthy women. Diagnostic model was developed, and validated using artificial neural network software.

RESULTS

An intact diagnostic model from all 253 discrepant protein peaks, and a terse model from the top-scored 4 peaks were built. The diagnostic sensitivity, and specificity of the intact model were 83.33% (15/18), and 88.89% (8/9)u the detection rates of breast cancer of stage I, and stage II-IV using the intact model were 90.00% (9/10), and 75.00% (6/8). The diagnostic sensitivity, and specificity of the terse model were 76.47% (13/17), and 90.00% (9/10)u the detection rates of breast cancer of stage I, and stage II-IV using the terse model were 100.00% (3/3), and 71.43% (10/14). The diagnostic values of these 2 models were similar (P>0.05). Their diagnostic abilities to breast cancer of stage I were not worse than those to breast cancer of stage II-IV (P>0.05).

CONCLUSION

High sensitivity and specificity achieved by this method show great potential for early diagnosis of breast cancer, and screening for new tumor biomarkers.

摘要

背景与目的

蛋白质组学的进展为癌症的早期诊断和新肿瘤生物标志物的筛选提供了一个新平台。本研究旨在利用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)蛋白质芯片阵列技术和人工神经网络软件开发并评估乳腺癌诊断模型。

方法

采用SELDI-TOF-MS蛋白质芯片检测49例乳腺癌患者和33名健康女性的血清蛋白质谱。使用人工神经网络软件建立并验证诊断模型。

结果

构建了一个包含所有253个差异蛋白峰的完整诊断模型和一个由得分最高的4个峰组成的简洁模型。完整模型的诊断敏感性和特异性分别为83.33%(15/18)和88.89%(8/9),使用完整模型对Ⅰ期和Ⅱ-Ⅳ期乳腺癌的检出率分别为90.00%(9/10)和75.00%(6/8)。简洁模型的诊断敏感性和特异性分别为76.47%(13/17)和90.00%(9/10),使用简洁模型对Ⅰ期和Ⅱ-Ⅳ期乳腺癌的检出率分别为100.00%(3/3)和71.43%(10/14)。这两个模型的诊断价值相似(P>0.05)。它们对Ⅰ期乳腺癌的诊断能力不低于对Ⅱ-Ⅳ期乳腺癌的诊断能力(P>0.05)。

结论

该方法具有较高的敏感性和特异性,在乳腺癌早期诊断和新肿瘤生物标志物筛选方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验