Suppr超能文献

Calcium-independent phospholipase A2 is regulated by a novel protein kinase C in human coronary artery endothelial cells.

作者信息

Meyer Maureen C, Kell Pamela J, Creer Michael H, McHowat Jane

机构信息

Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.

出版信息

Am J Physiol Cell Physiol. 2005 Feb;288(2):C475-82. doi: 10.1152/ajpcell.00306.2004.

Abstract

We demonstrated previously that thrombin stimulation of endothelial cells activates a membrane-associated, Ca(2+)-independent phospholipase A2 (iPLA2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids. We report that incubation of human coronary artery endothelial cells (HCAEC) with phorbol 12-myristate 13-acetate (PMA) to activate protein kinase C (PKC) resulted in hydrolysis of cellular phospholipids similar to that observed with thrombin stimulation (0.05 IU/ml; 10 min). Thrombin stimulation resulted in a decrease in arachidonylated plasmenylcholine (2.7 +/- 0.1 vs. 5.3 +/- 0.4 nmol PO4/mg of protein) and plasmenylethanolamine (7.5 +/- 1.0 vs. 12.0 +/- 0.9 nmol PO4/mg of protein). Incubation with PMA resulted in decreases in arachidonylated plasmenylcholine (3.2 +/- 0.3 nmol PO4/mg of protein) and plasmenylethanolamine (6.0 +/- 1.0 nmol PO4/mg of protein). Incubation of HCAEC with the selective iPLA2 inhibitor bromoenol lactone (5 mM; 10 min) inhibited accelerated plasmalogen phospholipid hydrolysis in response to both PMA and thrombin stimulation. Incubation of HCAEC with PMA (100 nM; 5 min) resulted in increased arachidonic acid release (7.1 +/- 0.3 vs. 1.1 +/- 0.1%) and increased production of lysoplasmenylcholine (1.4 +/- 0.2 vs. 0.6 +/- 0.1 nmol PO4/mg of protein), similar to the responses observed with thrombin stimulation. Downregulation of PKC by prolonged exposure to PMA (100 nM; 24 h) completely inhibited thrombin-stimulated increases in arachidonic acid release (7.1 +/- 0.6 to 0.5 +/- 0.1%) and lysoplasmenylcholine production (2.0 +/- 0.1 to 0.2 +/- 0.1 nmol PO4/mg of protein). These data suggest that PKC activates iPLA2 in HCAEC, leading to accelerated plasmalogen phospholipid hydrolysis and increased phospholipid metabolite production.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验