Suppr超能文献

通过单核苷酸多态性微阵列分析证明白色念珠菌菌株在感染期间杂合性缺失以及菌株形态改变。

Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection.

作者信息

Forche Anja, May Georgiana, Magee P T

机构信息

Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.

出版信息

Eukaryot Cell. 2005 Jan;4(1):156-65. doi: 10.1128/EC.4.1.156-165.2005.

Abstract

Candida albicans is a diploid yeast with a predominantly clonal mode of reproduction, and no complete sexual cycle is known. As a commensal organism, it inhabits a variety of niches in humans. It becomes an opportunistic pathogen in immunocompromised patients and can cause both superficial and disseminated infections. It has been demonstrated that genome rearrangement and genetic variation in isolates of C. albicans are quite common. One possible mechanism for generating genome-level variation among individuals of this primarily clonal fungus is mutation and mitotic recombination leading to loss of heterozygosity (LOH). Taking advantage of a recently published genome-wide single-nucleotide polymorphism (SNP) map (A. Forche, P. T. Magee, B. B. Magee, and G. May, Eukaryot. Cell 3:705-714, 2004), an SNP microarray was developed for 23 SNP loci residing on chromosomes 5, 6, and 7. It was used to examine 21 strains previously shown to have undergone mitotic recombination at the GAL1 locus on chromosome 1 during infection in mice. In addition, karyotypes and morphological properties of these strains were evaluated. Our results show that during in vivo passaging, LOH events occur at observable frequencies, that such mitotic recombination events occur independently in different loci across the genome, and that changes in karyotypes and alterations of phenotypic characteristics can be observed alone, in combination, or together with LOH.

摘要

白色念珠菌是一种二倍体酵母,主要通过克隆方式繁殖,目前尚无完整的有性生殖周期。作为一种共生生物,它存在于人体的多种生态位中。在免疫功能低下的患者中,它会成为机会性病原体,可引起浅表感染和播散性感染。已证明白色念珠菌分离株中的基因组重排和遗传变异相当普遍。在这种主要为克隆性的真菌个体间产生基因组水平变异的一种可能机制是突变和有丝分裂重组导致杂合性缺失(LOH)。利用最近发表的全基因组单核苷酸多态性(SNP)图谱(A. Forche、P. T. Magee、B. B. Magee和G. May,《真核细胞》3:705 - 714,2004年),开发了一种针对位于5号、6号和7号染色体上的23个SNP位点的SNP微阵列。该微阵列用于检测21株先前已证明在小鼠感染期间在1号染色体上的GAL1位点发生有丝分裂重组的菌株。此外,还评估了这些菌株的核型和形态学特性。我们的结果表明,在体内传代过程中,LOH事件以可观察到的频率发生,这种有丝分裂重组事件在基因组的不同位点独立发生,并且核型变化和表型特征改变可以单独、联合或与LOH一起被观察到。

相似文献

2
The Genome of the Human Pathogen Is Shaped by Mutation and Cryptic Sexual Recombination.
mBio. 2018 Sep 18;9(5):e01205-18. doi: 10.1128/mBio.01205-18.
3
Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans.
Fungal Genet Biol. 2009 Feb;46(2):159-68. doi: 10.1016/j.fgb.2008.11.005. Epub 2008 Dec 21.
6
Genome-wide single-nucleotide polymorphism map for Candida albicans.
Eukaryot Cell. 2004 Jun;3(3):705-14. doi: 10.1128/EC.3.3.705-714.2004.
7
Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.
PLoS Genet. 2008 Jan;4(1):e1. doi: 10.1371/journal.pgen.0040001. Epub 2007 Nov 20.
8
Stress alters rates and types of loss of heterozygosity in Candida albicans.
mBio. 2011 Jul 26;2(4). doi: 10.1128/mBio.00129-11. Print 2011.
9
Effect of the major repeat sequence on mitotic recombination in Candida albicans.
Genetics. 2006 Dec;174(4):1737-44. doi: 10.1534/genetics.106.063271. Epub 2006 Oct 8.
10
Genetic evidence for recombination in Candida albicans based on haplotype analysis.
Fungal Genet Biol. 2004 May;41(5):553-62. doi: 10.1016/j.fgb.2003.12.008.

引用本文的文献

2
Loss of Heterozygosity and Its Importance in Evolution.
J Mol Evol. 2023 Jun;91(3):369-377. doi: 10.1007/s00239-022-10088-8. Epub 2023 Feb 8.
3
Host Defense Mechanisms Induce Genome Instability Leading to Rapid Evolution in an Opportunistic Fungal Pathogen.
Infect Immun. 2022 Feb 17;90(2):e0032821. doi: 10.1128/IAI.00328-21. Epub 2021 Dec 13.
4
Molecular typing of multi-drug resistant Candida albicans isolated from the Segamat community, Malaysia.
Braz J Microbiol. 2021 Dec;52(4):2351-2356. doi: 10.1007/s42770-021-00558-4. Epub 2021 Jul 8.
6
Drug resistance and tolerance in fungi.
Nat Rev Microbiol. 2020 Jun;18(6):319-331. doi: 10.1038/s41579-019-0322-2. Epub 2020 Feb 11.
8
Mechanisms of genome evolution in Candida albicans.
Curr Opin Microbiol. 2019 Dec;52:47-54. doi: 10.1016/j.mib.2019.05.001. Epub 2019 Jun 6.
9
Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype.
PLoS Genet. 2019 May 15;15(5):e1008137. doi: 10.1371/journal.pgen.1008137. eCollection 2019 May.
10
Flow Cytometry Analysis of Fungal Ploidy.
Curr Protoc Microbiol. 2018 Aug;50(1):e58. doi: 10.1002/cpmc.58. Epub 2018 Jul 20.

本文引用的文献

1
Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique.
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11374-9. doi: 10.1073/pnas.0404318101. Epub 2004 Jul 22.
2
Genome-wide single-nucleotide polymorphism map for Candida albicans.
Eukaryot Cell. 2004 Jun;3(3):705-14. doi: 10.1128/EC.3.3.705-714.2004.
5
The diploid genome sequence of Candida albicans.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34. doi: 10.1073/pnas.0401648101. Epub 2004 May 3.
7
Genetic evidence for recombination in Candida albicans based on haplotype analysis.
Fungal Genet Biol. 2004 May;41(5):553-62. doi: 10.1016/j.fgb.2003.12.008.
9
Chromosome 1 trisomy compromises the virulence of Candida albicans.
Mol Microbiol. 2004 Jan;51(2):551-65. doi: 10.1046/j.1365-2958.2003.03852.x.
10
Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans.
Microbiology (Reading). 2004 Jan;150(Pt 1):229-240. doi: 10.1099/mic.0.26792-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验