Khellah F, Fieguth P, Murray M J, Allen M
Department of Computer Science, Prince Sultan University, Riyadh, Saudi Arabia.
IEEE Trans Image Process. 2005 Jan;14(1):80-93. doi: 10.1109/tip.2004.838703.
The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. In this paper, we present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 x 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.
在遥感中经常遇到的大规模随机图像序列的动态估计,在各种科学应用中都很重要。然而,此类图像的大小使得传统的动态估计方法(例如卡尔曼滤波器及相关滤波器)不切实际。在本文中,我们提出了一种模仿卡尔曼滤波器的方法,但计算和存储需求大幅降低。我们的方法在一个512×512的海洋表面温度图像序列的背景下进行了说明。静态估计步骤是这里的主要贡献,它使用了平稳模型的混合来准确模拟非平稳先验的影响,简化了计算复杂度和建模。我们的方法提供了一个高效、稳定、正定的模型,该模型与给定的相关结构一致。因此,本文的方法可能会在建模和单帧估计中得到应用。