Del Negro Christopher A, Morgado-Valle Consuelo, Hayes John A, Mackay Devin D, Pace Ryland W, Crowder Erin A, Feldman Jack L
Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095-1763, USA.
J Neurosci. 2005 Jan 12;25(2):446-53. doi: 10.1523/JNEUROSCI.2237-04.2005.
The breathing motor pattern in mammals originates in brainstem networks. Whether pacemaker neurons play an obligatory role remains a key unanswered question. We performed whole-cell recordings in the preBotzinger Complex in slice preparations from neonatal rodents and tested for pacemaker activity. We observed persistent Na+ current (I(NaP))-mediated bursting in approximately 5% of inspiratory neurons in postnatal day 0 (P0)-P5 and in P8-P10 slices. I(NaP)-mediated bursting was voltage dependent and blocked by 20 mum riluzole (RIL). We found Ca2+ current (I(Ca))-dependent bursting in 7.5% of inspiratory neurons in P8-P10 slices, but in P0-P5 slices these cells were exceedingly rare (0.6%). This bursting was voltage independent and blocked by 100 microm Cd2+ or flufenamic acid (FFA) (10-200 microm), which suggests that a Ca2+-activated inward cationic current (I(CAN)) underlies burst generation. These data substantiate our observation that P0-P5 slices exposed to RIL contain few (if any) pacemaker neurons, yet maintain respiratory rhythm. We also show that 20 nm TTX or coapplication of 20 microm RIL + FFA (100-200 microm) stops the respiratory rhythm, but that adding 2 mum substance P restarts it. We conclude that I(NaP) and I(CAN) enhance neuronal excitability and promote rhythmogenesis, even if their magnitude is insufficient to support bursting-pacemaker activity in individual neurons. When I(NaP) and I(CAN) are removed pharmacologically, the rhythm can be maintained by boosting neural excitability, which is inconsistent with a pacemaker-essential mechanism of respiratory rhythmogenesis by the preBotzinger complex.
哺乳动物的呼吸运动模式起源于脑干网络。起搏神经元是否发挥必不可少的作用仍是一个关键的未解决问题。我们在新生啮齿动物脑片标本的前包钦格复合体中进行了全细胞记录,并测试了起搏活动。我们在出生后第0天(P0)-P5以及P8-P10脑片中观察到,约5%的吸气神经元存在持续钠电流(I(NaP))介导的爆发式放电。I(NaP)介导的爆发式放电依赖电压,可被20 μM利鲁唑(RIL)阻断。我们发现,在P8-P10脑片中,7.5%的吸气神经元存在钙电流(I(Ca))依赖的爆发式放电,但在P0-P5脑片中,这类细胞极为罕见(0.6%)。这种爆发式放电不依赖电压,可被100 μM Cd2+或氟芬那酸(FFA)(10-200 μM)阻断,这表明钙激活内向阳离子电流(I(CAN))是爆发式放电产生的基础。这些数据证实了我们的观察结果,即暴露于RIL的P0-P5脑片中几乎没有(如果有的话)起搏神经元,但仍能维持呼吸节律。我们还表明,20 nM河豚毒素(TTX)或20 μM RIL与FFA(100-200 μM)共同应用可使呼吸节律停止,但添加2 μM P物质可使其恢复。我们得出结论,I(NaP)和I(CAN)增强了神经元兴奋性并促进节律生成,即使其幅度不足以支持单个神经元的爆发式起搏活动。当通过药理学方法去除I(NaP)和I(CAN)时,可通过增强神经兴奋性来维持节律,这与前包钦格复合体呼吸节律生成的起搏必需机制不一致。