Suppr超能文献

血管壁的透壁应变分布

Transmural strain distribution in the blood vessel wall.

作者信息

Guo Xiaomei, Lu Xiao, Kassab Ghassan S

机构信息

Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H881-6. doi: 10.1152/ajpheart.00607.2004.

Abstract

The transmural distributions of stress and strain at the in vivo state have important implications for the physiology and pathology of the vessel wall. The uniform transmural strain hypothesis was proposed by Takamyzawa and Hayashi (Takamizawa K and Hayashi K. J Biomech 20: 7-17, 1987; Biorheology 25: 555-565, 1988) as describing the state of arteries in vivo. From this hypothesis, they derived the residual stress and strain at the no-load condition and the opening angle at the zero-stress state. However, the experimental evidence cited by Takamyzawa and Hayashi (J Biomech 20: 7-17, 1987; and Biorheology 25: 555-565, 1988) to support this hypothesis was limited to arteries whose opening angles (theta) are <180 degrees. It is well known, however, that theta > 180 degrees do exist in the cardiovascular system. Our hypothesis is that the transmural strain distribution cannot be uniform when theta; is >180 degrees. We present both theoretical and experimental evidence for this hypothesis. Theoretically, we show that the circumferential stretch ratio cannot physically be uniform across the vessel wall when theta; exceeds 180 degrees and the deviation from uniformity will increase with an increase in theta; beyond 180 degrees. Experimentally, we present data on the transmural strain distribution in segments of the porcine aorta and coronary arterial tree. Our data validate the theoretical prediction that the outer strain will exceed the inner strain when theta > 180 degrees. This is the converse of the gradient observed when the residual strain is not taken into account. Although the strain distribution may not be uniform when theta exceeds 180 degrees, the uniformity of stress distribution is still possible because of the composite nature of the blood vessel wall, i.e., the intima-medial layer is stiffer than the adventitial layer. Hence, the larger strain at the adventitia can result in a smaller stress because the adventitia is softer at physiological loading.

摘要

体内状态下应力和应变的跨壁分布对血管壁的生理和病理具有重要意义。Takamyzawa和Hayashi(Takamizawa K和Hayashi K. J Biomech 20: 7 - 17, 1987;Biorheology 25: 555 - 565, 1988)提出了均匀跨壁应变假说,用于描述体内动脉的状态。基于这一假说,他们推导出了无负载条件下的残余应力和应变以及零应力状态下的开口角度。然而,Takamyzawa和Hayashi(J Biomech 20: 7 - 17, 1987;以及Biorheology 25: 555 - 565, 1988)所引用的支持这一假说的实验证据仅限于开口角度(θ)小于180度的动脉。然而,众所周知,心血管系统中确实存在θ大于180度的情况。我们的假说为,当θ大于180度时,跨壁应变分布不可能是均匀的。我们为这一假说提供了理论和实验证据。从理论上讲,我们表明当θ超过180度时,圆周拉伸比在物理上不可能在整个血管壁上均匀,并且随着θ超过180度,与均匀性的偏差会增加。在实验方面,我们给出了猪主动脉和冠状动脉树节段的跨壁应变分布数据。我们的数据验证了理论预测,即当θ大于180度时,外应变将超过内应变。这与不考虑残余应变时观察到的梯度情况相反。尽管当θ超过180度时应变分布可能不均匀,但由于血管壁的复合性质,即内膜 - 中层比外膜层更硬,应力分布仍有可能均匀。因此,在外膜处较大的应变可能导致较小的应力,因为在生理负荷下外膜更软。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验