Suppr超能文献

蛋白质结晶:虚拟筛选与优化

Protein crystallization: virtual screening and optimization.

作者信息

Delucas Lawrence J, Hamrick David, Cosenza Larry, Nagy Lisa, McCombs Debbie, Bray Terry, Chait Arnon, Stoops Brad, Belgovskiy Alexander, William Wilson W, Parham Marc, Chernov Nikolai

机构信息

Center for Biophysical Sciences and Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Prog Biophys Mol Biol. 2005 Jul;88(3):285-309. doi: 10.1016/j.pbiomolbio.2004.07.008. Epub 2004 Sep 30.

Abstract

Advances in genomics have yielded entire genetic sequences for a variety of prokaryotic and eukaryotic organisms. This accumulating information has escalated the demands for three-dimensional protein structure determinations. As a result, high-throughput structural genomics has become a major international research focus. This effort has already led to several significant improvements in X-ray crystallographic and nuclear magnetic resonance methodologies. Crystallography is currently the major contributor to three-dimensional protein structure information. However, the production of soluble, purified protein and diffraction-quality crystals are clearly the major roadblocks preventing the realization of high-throughput structure determination. This paper discusses a novel approach that may improve the efficiency and success rate for protein crystallization. An automated nanodispensing system is used to rapidly prepare crystallization conditions using minimal sample. Proteins are subjected to an incomplete factorial screen (balanced parameter screen), thereby efficiently searching the entire "crystallization space" for suitable conditions. The screen conditions and scored experimental results are subsequently analyzed using a neural network algorithm to predict new conditions likely to yield improved crystals. Results based on a small number of proteins suggest that the combination of a balanced incomplete factorial screen and neural network analysis may provide an efficient method for producing diffraction-quality protein crystals.

摘要

基因组学的进展已得出多种原核生物和真核生物的完整基因序列。这些不断积累的信息增加了对三维蛋白质结构测定的需求。因此,高通量结构基因组学已成为国际主要研究热点。这一努力已经在X射线晶体学和核磁共振方法上带来了多项重大改进。目前,晶体学是三维蛋白质结构信息的主要贡献者。然而,可溶性、纯化蛋白质的生产以及衍射质量晶体的制备显然是阻碍高通量结构测定实现的主要障碍。本文讨论了一种可能提高蛋白质结晶效率和成功率的新方法。一种自动纳米分配系统用于使用最少的样品快速制备结晶条件。蛋白质经过不完全析因筛选(平衡参数筛选),从而有效地在整个“结晶空间”中搜索合适的条件。随后使用神经网络算法分析筛选条件和评分后的实验结果,以预测可能产生更好晶体的新条件。基于少数蛋白质的结果表明,平衡不完全析因筛选和神经网络分析相结合可能为生产衍射质量的蛋白质晶体提供一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验