Suppr超能文献

神经胶质细胞限制性前体细胞在体外可保护运动神经元免受慢性谷氨酸神经毒性作用。

Glial restricted precursors protect against chronic glutamate neurotoxicity of motor neurons in vitro.

作者信息

Maragakis Nicholas J, Rao Mahendra S, Llado Jeronia, Wong Victor, Xue Haipeng, Pardo Andrea, Herring Joseph, Kerr Douglas, Coccia Carol, Rothstein Jeffrey D

机构信息

Department of Neurology and Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287, USA.

出版信息

Glia. 2005 Apr 15;50(2):145-59. doi: 10.1002/glia.20161.

Abstract

We have examined the expression of glutamate transporters in primary and immortalized glial precursors (GRIPs). We subsequently transduced these cells with the GLT1 glutamate transporter and examined the ability of these cells to protect motor neurons in an organotypic spinal cord culture. We show that glial restricted precursors and GRIP-derived astrocytes predominantly express glutamate transporters GLAST and GLT1. Oligodendrocyte differentiation of GRIPs results in downregulation of all glutamate transporter subtypes. Having identified these precursor cells as potential vectors for delivering glutamate transporters to regions of interest, we engineered a line of GRIPS that overexpress the glutamate transporter GLT1. These cells (G3 cells) have a nearly fourfold increase in glutamate transporter expression and at least a twofold increase in the V(max) for glutamate transport. To assess whether G3 seeding can protect motor neurons from chronic glutamate neurotoxicity, G3s were seeded onto rat organotypic spinal cord cultures. These cultures have previously been used extensively to understand pathways involved in chronic glutamate neurotoxicity of motor neurons. After G3 seeding, cells integrated into the culture slice and resulted in levels of glutamate transport sufficient to enhance total glutamate uptake. To test whether neuroprotection was related to glutamate transporter overexpression, we isolated GRIPS from the GLT1 null mouse to serve as controls. The seeding of G3s resulted in a reduction of motor neuron cell death. Hence, we believe that these cells may potentially play a role in cell-based neuroprotection from glutamate excitotoxicity.

摘要

我们检测了原代和永生化神经胶质前体细胞(GRIPs)中谷氨酸转运体的表达。随后,我们用GLT1谷氨酸转运体转导这些细胞,并检测这些细胞在器官型脊髓培养物中保护运动神经元的能力。我们发现,神经胶质限制前体细胞和源自GRIPs的星形胶质细胞主要表达谷氨酸转运体GLAST和GLT1。GRIPs向少突胶质细胞的分化导致所有谷氨酸转运体亚型的下调。在确定这些前体细胞作为将谷氨酸转运体递送至感兴趣区域的潜在载体后,我们构建了一系列过表达谷氨酸转运体GLT1的GRIPs。这些细胞(G3细胞)的谷氨酸转运体表达增加了近四倍,谷氨酸转运的V(max)至少增加了两倍。为了评估接种G3细胞是否能保护运动神经元免受慢性谷氨酸神经毒性,将G3细胞接种到大鼠器官型脊髓培养物上。这些培养物此前已被广泛用于了解运动神经元慢性谷氨酸神经毒性所涉及的途径。接种G3细胞后,细胞整合到培养切片中,导致谷氨酸转运水平足以增强总谷氨酸摄取。为了测试神经保护是否与谷氨酸转运体的过表达有关,我们从GLT1基因敲除小鼠中分离出GRIPs作为对照。接种G3细胞可减少运动神经元细胞死亡。因此,我们认为这些细胞可能在基于细胞的针对谷氨酸兴奋性毒性的神经保护中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验