Bowman Aaron B, Yoo Seung-Yun, Dantuma Nico P, Zoghbi Huda Y
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Hum Mol Genet. 2005 Mar 1;14(5):679-91. doi: 10.1093/hmg/ddi064. Epub 2005 Jan 20.
The accumulation of protein deposits in neurons, in vitro proteasome assays and over-expression studies suggest that impairment of the ubiquitin-proteasome system (UPS) may be a common mechanism of pathogenesis in polyglutamine diseases such as Huntington disease and spinocerebellar ataxias (SCAs). Using a knock-in mouse model that recapitulates the clinical features of human SCA7, including selective neuronal dysfunction, we assessed the UPS at cellular resolution using transgenic mice that express a green fluorescent protein (GFP)-based reporter substrate (Ub(G76V)-GFP) of the UPS. The levels of the reporter remained low during the initial phase of disease, suggesting that neuronal dysfunction occurs in the presence of a functional UPS. Late in disease, we observed a significant increase in reporter levels specific to the most vulnerable neurons. Surprisingly, the basis for the increase in Ub(G76V)-GFP protein can be explained by a corresponding increase in Ub(G76V)-GFP mRNA in the vulnerable neurons. An in vitro assay also showed normal proteasome proteolytic activity in the vulnerable neurons. Thus, no evidence for general UPS impairment or reduction of proteasome activity was seen. The differential increase of Ub(G76V)-GFP among individual neurons directly correlated with the down-regulation of a marker of selective pathology and neuronal dysfunction in SCA7. Furthermore, we observed a striking inverse correlation between the neuropathology revealed by this reporter and ataxin-7 nuclear inclusions in the vulnerable neurons. Altogether, these data show a protective role against neuronal dysfunction for polyglutamine nuclear inclusions and exclude significant impairment of the UPS as a necessary step for polyglutamine neuropathology.
神经元中蛋白质沉积物的积累、体外蛋白酶体检测及过表达研究表明,泛素-蛋白酶体系统(UPS)功能受损可能是亨廷顿病和脊髓小脑共济失调(SCA)等多聚谷氨酰胺疾病发病机制中的一个常见机制。利用一种能重现人类SCA7临床特征(包括选择性神经元功能障碍)的基因敲入小鼠模型,我们使用表达基于绿色荧光蛋白(GFP)的UPS报告底物(Ub(G76V)-GFP)的转基因小鼠,在细胞水平评估了UPS。在疾病初期,报告底物水平保持较低,这表明在功能性UPS存在的情况下会发生神经元功能障碍。在疾病后期,我们观察到最易受损神经元特有的报告底物水平显著增加。令人惊讶的是,Ub(G76V)-GFP蛋白增加的原因可以用易损神经元中Ub(G76V)-GFP mRNA相应增加来解释。体外检测还显示易损神经元中蛋白酶体的蛋白水解活性正常。因此,未发现UPS普遍受损或蛋白酶体活性降低的证据。单个神经元之间Ub(G76V)-GFP的差异增加与SCA7中选择性病理和神经元功能障碍标志物的下调直接相关。此外,我们观察到该报告底物显示的神经病理学与易损神经元中的ataxin-7核内包涵体之间存在显著的负相关。总之,这些数据表明多聚谷氨酰胺核内包涵体对神经元功能障碍具有保护作用,并排除了UPS严重受损是多聚谷氨酰胺神经病理学必要步骤的可能性。