Suppr超能文献

基于神经营养因子的神经保护策略。

Neurotrophin-based strategies for neuroprotection.

作者信息

Longo Frank M, Massa Stephen M

机构信息

Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

J Alzheimers Dis. 2004 Dec;6(6 Suppl):S13-7. doi: 10.3233/jad-2004-6s606.

Abstract

Neurotrophins activate a number of signaling pathways relevant to neuroprotection; however, their poor pharmacological properties and their pleiotropic effects resulting from interaction with the p75(NTR)-Trk-sortilin three-receptor signaling system limit therapeutic application. While local application of neurotrophin proteins addresses some of the pharmacological challenges, selective targeting of neurotrophin receptors might allow for more selective application of neurotrophin receptor signaling modulation. Recent studies have supported the feasibility of developing non-peptidyl small molecules that mimic specific domains of neurotrophins and modulate signaling of specific neurotrophin receptors. The expression of p75(NTR) by populations of neurons most vulnerable in Alzheimer's disease and the linkage of p75(NTR) signaling to aberrant signaling mechanisms occurring in this disorder, point to potential applications for p75(NTR)-based small molecule strategies. Small molecules targeted to p75(NTR) in the settings of neurodegenerative disease and other forms of neural injury might serve to inhibit death signaling, block proNGF-mediated degenerative signaling and minimize deleterious effects promoted by pharmacologically upregulated Trk signaling.

摘要

神经营养因子可激活许多与神经保护相关的信号通路;然而,其较差的药理学特性以及与p75(NTR)-Trk- sortilin三受体信号系统相互作用所产生的多效性作用限制了其治疗应用。虽然局部应用神经营养因子蛋白解决了一些药理学挑战,但选择性靶向神经营养因子受体可能会使神经营养因子受体信号调节的应用更具选择性。最近的研究支持了开发模拟神经营养因子特定结构域并调节特定神经营养因子受体信号传导的非肽类小分子的可行性。在阿尔茨海默病中最易受损的神经元群体中p75(NTR)的表达以及p75(NTR)信号传导与该疾病中异常信号传导机制的联系,指出了基于p75(NTR)的小分子策略的潜在应用。在神经退行性疾病和其他形式的神经损伤中靶向p75(NTR)的小分子可能有助于抑制死亡信号传导、阻断前体神经营养因子介导的退行性信号传导,并将药理学上调的Trk信号传导所促进的有害作用降至最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验