Suppr超能文献

乙二醇蒸汽在(α-Al2O3(0001)和非晶态SiO2表面的吸附:分子取向和作为吸附位点的表面羟基的观测。

Adsorption of ethylene glycol vapor on (alpha-AI2O3 (0001) and amorphous SiO2 surfaces: observation of molecular orientation and surface hydroxyl groups as sorption sites.

作者信息

Liu Dingfang, Gang M A, Xu Man, Allen Heather C

机构信息

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Environ Sci Technol. 2005 Jan 1;39(1):206-12. doi: 10.1021/es049066a.

Abstract

Vapor adsorption is an important process influencing the migration and the fates of many organic pollutants in the environment. In this study, adsorption of ethylene glycol (EG) vapor onto single crystal alpha-Al2O3 (0001) and fused SiO2 (amorphous) surfaces was studied with sum frequency generation spectroscopy, a well-suited surface specific technique for probing interfacial phenomena atthe molecular scale. Air-aqueous EG solutions were also investigated to compare to the adsorption at the air-solid interface in the presence of water vapor. The gauche conformer of EG molecules dominates the air-aqueous EG solution interface, and EG molecules act as hydrogen acceptors at the air-liquid interface. Water and surface hydrophilic/ hydrophobic properties play important roles for the adsorption of EG onto silica and alumina surfaces. The adsorbed EG molecules interact in different ways at the two different oxide surfaces. EG molecules weakly physisorb onto the alpha-Al2O3 (0001) surface by forming relatively weak hydrogen bonds with surface water molecules. On the silica surface, the suppression of the silanol OH stretching peak indicates that EG molecules form hydrogen bonds with silanol OH groups.

摘要

蒸汽吸附是影响许多有机污染物在环境中迁移和归宿的重要过程。在本研究中,利用和频振动光谱研究了乙二醇(EG)蒸汽在单晶α-Al2O3(0001)和熔融SiO2(非晶态)表面的吸附情况,和频振动光谱是一种非常适合在分子尺度上探测界面现象的表面特异性技术。还研究了空气-水EG溶液,以便与存在水蒸气时气-固界面的吸附情况进行比较。EG分子的gauche构象异构体在空气-水EG溶液界面占主导地位,并且EG分子在气-液界面充当氢受体。水和表面亲水/疏水性质对EG在二氧化硅和氧化铝表面的吸附起着重要作用。吸附的EG分子在两种不同的氧化物表面以不同方式相互作用。EG分子通过与表面水分子形成相对较弱的氢键而弱物理吸附在α-Al2O3(0001)表面。在二氧化硅表面,硅醇OH伸缩峰的抑制表明EG分子与硅醇OH基团形成氢键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验