Friedrich B, Buhrke T, Burgdorf T, Lenz O
Institute of Biology, Humboldt University, Berlin, Germany.
Biochem Soc Trans. 2005 Feb;33(Pt 1):97-101. doi: 10.1042/BST0330097.
H(2) is an attractive energy source for many microorganisms and is mostly consumed before it enters oxic habitats. Thus aerobic H(2)-oxidizing organisms receive H(2) only occasionally and in limited amounts. Metabolic adaptation requires a robust oxygen-tolerant hydrogenase enzyme system and special regulatory devices that enable the organism to respond rapidly to a changing supply of H(2). The proteobacterium Ralstonia eutropha strain H16 that harbours three [NiFe] hydrogenases perfectly meets these demands. The unusual biochemical and structural properties of the hydrogenases are described, including the strategies that confer O(2) tolerance to the NAD-reducing soluble hydrogenase and the H(2)-sensing regulatory hydrogenase. The regulatory hydrogenase that forms a complex with a histidine protein kinase recognizes H(2) in the environment and transmits the signal to a response regulator, which in turn controls transcription of the hydrogenase genes.
氢气(H₂)对许多微生物来说是一种有吸引力的能源,并且在进入有氧生境之前大多已被消耗。因此,好氧的H₂氧化生物只是偶尔且少量地获得H₂。代谢适应需要一个强大的耐氧氢化酶系统以及特殊的调节机制,使生物体能够对不断变化的H₂供应迅速做出反应。拥有三种[NiFe]氢化酶的真养产碱杆菌菌株H16完全满足这些要求。文中描述了这些氢化酶不同寻常的生化和结构特性,包括赋予还原型辅酶Ⅰ(NAD)的可溶性氢化酶耐氧性以及H₂感应调节氢化酶的策略。与组氨酸蛋白激酶形成复合物的调节氢化酶能够识别环境中的H₂,并将信号传递给响应调节因子,进而控制氢化酶基因的转录。