Suppr超能文献

拥挤现象不同于普通的掩蔽:它能将特征整合与检测区分开来。

Crowding is unlike ordinary masking: distinguishing feature integration from detection.

作者信息

Pelli Denis G, Palomares Melanie, Majaj Najib J

机构信息

Psychology & Neural Science, New York University, New York, NY, USA.

出版信息

J Vis. 2004 Dec 30;4(12):1136-69. doi: 10.1167/4.12.12.

Abstract

A letter in the peripheral visual field is much harder to identify in the presence of nearby letters. This is "crowding." Both crowding and ordinary masking are special cases of "masking," which, in general, refers to any effect of a "mask" pattern on the discriminability of a signal. Here we characterize crowding, and propose a diagnostic test to distinguish it from ordinary masking. In ordinary masking, the signal disappears. In crowding, it remains visible, but is ambiguous, jumbled with its neighbors. Masks are usually effective only if they overlap the signal, but the crowding effect extends over a large region. The width of that region is proportional to signal eccentricity from the fovea and independent of signal size, mask size, mask contrast, signal and mask font, and number of masks. At 4 deg eccentricity, the threshold contrast for identification of a 0.32 deg signal letter is elevated (up to six-fold) by mask letters anywhere in a 2.3 deg region, 7 times wider than the signal. In ordinary masking, threshold contrast rises as a power function of mask contrast, with a shallow log-log slope of 0.5 to 1, whereas, in crowding, threshold is a sigmoidal function of mask contrast, with a steep log-log slope of 2 at close spacing. Most remarkably, although the threshold elevation decreases exponentially with spacing, the threshold and saturation contrasts of crowding are independent of spacing. Finally, ordinary masking is similar for detection and identification, but crowding occurs only for identification, not detection. More precisely, crowding occurs only in tasks that cannot be done based on a single detection by coarsely coded feature detectors. These results (and observers' introspections) suggest that ordinary masking blocks feature detection, so the signal disappears, while crowding (like "illusory conjunction") is excessive feature integration - detected features are integrated over an inappropriately large area because there are no smaller integration fields - so the integrated signal is ambiguous, jumbled with the mask. In illusory conjunction, observers see an object that is not there made up of features that are. A survey of the illusory conjunction literature finds that most of the illusory conjunction results are consistent with the spatial crowding described here, which depends on spatial proximity, independent of time pressure. The rest seem to arise through a distinct phenomenon that one might call "temporal crowding," which depends on time pressure ("overloading attention"), independent of spatial proximity.

摘要

在周边视野中,当附近有其他字母时,一个字母会更难辨认。这就是“拥挤效应”。拥挤效应和普通掩蔽都是“掩蔽”的特殊情况,一般来说,掩蔽是指“掩蔽”图案对信号可辨别性的任何影响。在此,我们对拥挤效应进行了描述,并提出了一种诊断测试,以将其与普通掩蔽区分开来。在普通掩蔽中,信号消失。在拥挤效应中,信号仍然可见,但变得模糊不清,与相邻字母混淆在一起。掩蔽通常只有在与信号重叠时才有效,但拥挤效应会扩展到较大区域。该区域的宽度与信号离中央凹的偏心度成正比,且与信号大小、掩蔽大小、掩蔽对比度、信号和掩蔽字体以及掩蔽数量无关。在偏心度为4度时,在一个2.3度区域内的任何位置出现掩蔽字母,都会使识别一个0.32度信号字母的阈值对比度升高(高达6倍),该区域比信号宽7倍。在普通掩蔽中,阈值对比度随掩蔽对比度呈幂函数上升,对数-对数斜率较浅,为0.5至1,而在拥挤效应中,阈值是掩蔽对比度的S形函数,在近距离时对数-对数斜率较陡,为2。最显著的是,尽管阈值升高随间距呈指数下降,但拥挤效应的阈值和饱和对比度与间距无关。最后,普通掩蔽在检测和识别方面相似,但拥挤效应仅发生在识别过程中,而不是检测过程中。更准确地说,拥挤效应仅发生在基于粗略编码特征检测器的单次检测无法完成的任务中。这些结果(以及观察者的内省)表明,普通掩蔽会阻断特征检测,因此信号消失,而拥挤效应(如“错觉性结合”)是过度的特征整合——检测到的特征在不适当的大区域内进行整合,因为没有更小的整合区域——因此整合后的信号模糊不清,与掩蔽混淆在一起。在错觉性结合中,观察者看到一个由实际存在的特征组成但并不存在的物体。对错觉性结合文献的调查发现,大多数错觉性结合结果与这里描述的空间拥挤效应一致,空间拥挤效应取决于空间 proximity,与时间压力无关。其余的似乎是由一种可能称为“时间拥挤”的独特现象引起的,时间拥挤取决于时间压力(“注意力过载”),与空间 proximity 无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验