Sundaresan Vidyasankar, Chartron Justin, Yamaguchi Mutsuo, Stout C David
Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
J Mol Biol. 2005 Feb 18;346(2):617-29. doi: 10.1016/j.jmb.2004.11.070. Epub 2004 Dec 30.
Transhydrogenase (TH) couples direct and stereospecific hydride transfer between NAD(H) and NADP(H), bound within soluble domains I and III, respectively, to proton translocation across membrane bound domain II. The cocrystal structure of Rhodospirillum rubrum TH domains I and III has been determined in the presence of limiting NADH, under conditions in which the subunits reach equilibrium during crystallization. The crystals contain three heterotrimeric complexes, dI(2)dIII, in the asymmetric unit. Multiple conformations of loops and side-chains, and NAD(H) cofactors, are observed in domain I pertaining to substrate/product exchange, and highlighting electrostatic interactions during the hydride transfer. Two interacting NAD(H)-NADPH pairs are observed where alternate conformations of the NAD(H) phosphodiester and conserved arginine side-chains are correlated. In addition, the stereochemistry of one NAD(H)-NADPH pair approaches that expected for nicotinamide hydride transfer reactions. The cocrystal structure exhibits non-crystallographic symmetry that implies another orientation for domain III, which could occur in dimeric TH. Superposition of the "closed" form of domain III (PDB 1PNO, chain A) onto the dI(2)dIII complex reveals a severe steric conflict of highly conserved loops in domains I and III. This overlap, and the overlap with a 2-fold related domain III, suggests that motions of loop D within domain III and of the entire domain are correlated during turnover. The results support the concept that proton pumping in TH is driven by the difference in binding affinity for oxidized and reduced nicotinamide cofactors, and in the absence of a difference in redox potential, must occur through conformational effects.
转氢酶(TH)将NAD(H)和NADP(H)之间的直接和立体特异性氢化物转移耦合在一起,它们分别结合在可溶性结构域I和III中,与跨膜结合结构域II的质子转运相关。在有限NADH存在的情况下,已确定了红螺菌TH结构域I和III的共晶体结构,该条件下亚基在结晶过程中达到平衡。晶体在不对称单元中包含三个异源三聚体复合物dI(2)dIII。在与底物/产物交换相关的结构域I中观察到环和侧链以及NAD(H)辅因子的多种构象,突出了氢化物转移过程中的静电相互作用。观察到两个相互作用的NAD(H)-NADPH对,其中NAD(H)磷酸二酯和保守精氨酸侧链的交替构象相互关联。此外,一对NAD(H)-NADPH的立体化学接近烟酰胺氢化物转移反应预期的情况。共晶体结构表现出非晶体学对称性,这意味着结构域III的另一种取向,可能出现在二聚体TH中。将结构域III的“封闭”形式(PDB 1PNO,链A)叠加到dI(2)dIII复合物上,揭示了结构域I和III中高度保守环的严重空间冲突。这种重叠以及与2倍相关结构域III的重叠表明,在周转过程中,结构域III中环D的运动与整个结构域的运动是相关的。结果支持了这样的概念,即TH中的质子泵浦是由对氧化型和还原型烟酰胺辅因子结合亲和力的差异驱动的,并且在没有氧化还原电位差异的情况下,必须通过构象效应发生。