Adams Harry, Amado A M, Félix Vitor, Mann Brian E, Antelo-Martinez Jorge, Newell Mike, Ribeiro-Claro Paulo J A, Spey Sharon E, Thomas James A
Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
Chemistry. 2005 Mar 18;11(7):2031-46. doi: 10.1002/chem.200400693.
The synthesis of a series of RuII complexes incorporating thiacrown ligands ([12]ane-S4, [14]ane-S4, [16]ane-S4), as well as 2,2'-bipyridine (bpy) or pyridine, is reported. Structural studies on these complexes have been carried out using a variety of techniques. Detailed 1H NMR spectroscopic studies on the previously reported [Ru([12]ane-S4)(bpy)]2+ (1) reveal that-contrary to earlier reports-the observed fluxional 1H NMR behavior is not due to chemical exchange involving cleavage of the bpy Ru--N bond but is, in fact, due to lone-pair inversion of coordinated macrocyclic sulfur donor atoms. This phenomenon is also observed for the [14]ane-S4 and [16]ane-S4 analogues of 1. For the first time, using a combination of X-ray crystallography, more detailed 1H NMR experiments, and computational methods, an in-depth study on the energetics and dynamics of invertomer formation and conversion for macrocyclic coordination complexes has been carried out. These studies reveal that the steric constraints of assembling each sulfur macrocycle and bpy ligand around the octahedral Ru(II) center lead to close intramolecular contacts. These contacts are largely dependent on the orientation of the electron lone pairs of equatorial sulfur donor atoms and correlate with the comparative stability of the different invertomeric forms. Thus, the conformational preferences of the three macrocyles in [Ru([n]ane-S4)(bpy)]2+ complexes are determined by steric rather than electronic effects.
报道了一系列包含硫杂冠醚配体([12]ane-S4、[14]ane-S4、[16]ane-S4)以及2,2'-联吡啶(bpy)或吡啶的RuII配合物的合成。已使用多种技术对这些配合物进行了结构研究。对先前报道的[Ru([12]ane-S4)(bpy)]2+(1)进行的详细1H NMR光谱研究表明,与早期报道相反,观察到的1H NMR的动态行为并非由于涉及bpy Ru--N键断裂的化学交换,实际上是由于配位大环硫供体原子的孤对反转。在1的[14]ane-S4和[16]ane-S4类似物中也观察到了这种现象。首次结合X射线晶体学、更详细的1H NMR实验和计算方法,对大环配位配合物的反转异构体形成和转化的能量学和动力学进行了深入研究。这些研究表明,围绕八面体Ru(II)中心组装每个硫大环和bpy配体的空间位阻导致紧密的分子内接触。这些接触很大程度上取决于赤道硫供体原子的电子孤对的取向,并与不同反转异构体形式的相对稳定性相关。因此,[Ru([n]ane-S4)(bpy)]2+配合物中三种大环的构象偏好是由空间位阻而非电子效应决定的。