López-Bucio José, Hernández-Abreu Esmeralda, Sánchez-Calderón Lenin, Pérez-Torres Anahí, Rampey Rebekah A, Bartel Bonnie, Herrera-Estrella Luis
Departamento de Ingeniería Genética, Unidad Irapuato del Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico.
Plant Physiol. 2005 Feb;137(2):681-91. doi: 10.1104/pp.104.049577. Epub 2005 Jan 28.
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.
拟南芥(Arabidopsis thaliana)植株对低磷有效性表现出多种根系发育响应,包括主根生长受抑制、侧根形成增多以及根毛伸长增加。为深入了解磷(P)有效性改变胚后根系发育的调控机制,我们进行了突变体筛选以鉴定参与磷缺乏响应的遗传决定因素。分离出三个低磷抗性根系品系(lpr1 - 1至lpr1 - 3),因为它们在低磷条件下侧根形成减少。遗传和分子分析表明,所有lpr1突变体与BIG等位,BIG是拟南芥中正常生长素运输所必需的。对野生型和lpr1突变体中侧根原基(LRP)发育的详细表征表明,在高磷(1 mM)和低磷(1 μM)条件下,BIG都是中柱鞘细胞激活形成LRP所必需的,但不是低磷诱导的主根生长、侧根出现和根毛伸长改变所必需的。在两种磷处理中,外源供应生长素可恢复lpr1突变体中正常的侧根形成。用布雷菲德菌素A(一种阻断生长素运输的真菌代谢物)处理野生型拟南芥幼苗,在高磷和低磷条件下都模拟了lpr1突变体中观察到的根系发育改变,表明BIG参与生长素转运体的囊泡靶向。综上所述,我们的结果表明,生长素运输和BIG功能在中柱鞘细胞激活形成LRP以及促进根毛伸长中具有重要作用。然而,响应磷缺乏激活根系结构改变的机制似乎独立于生长素运输和BIG。