Kaandorp Jaap A, Sloot Peter M A, Merks Roeland M H, Bak Rolf P M, Vermeij Mark J A, Maier Cornelia
Section Computational Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.
Proc Biol Sci. 2005 Jan 22;272(1559):127-33. doi: 10.1098/rspb.2004.2934.
Understanding external deciding factors in growth and morphology of reef corals is essential to elucidate the role of corals in marine ecosystems, and to explain their susceptibility to pollution and global climate change. Here, we extend on a previously presented model for simulating the growth and form of a branching coral and we compare the simulated morphologies to three-dimensional (3D) images of the coral species Madracis mirabilis. Simulation experiments and isotope analyses of M. mirabilis skeletons indicate that external gradients of dissolved inorganic carbon (DIC) determine the morphogenesis of branching, phototrophic corals. In the simulations we use a first principle model of accretive growth based on local interactions between the polyps. The only species-specific information in the model is the average size of a polyp. From flow tank and simulation studies it is known that a relatively large stagnant and diffusion dominated region develops within a branching colony. We have used this information by assuming in our model that growth is entirely driven by a diffusion-limited process, where DIC supply represents the limiting factor. With such model constraints it is possible to generate morphologies that are virtually indistinguishable from the 3D images of the actual colonies.
了解影响珊瑚礁珊瑚生长和形态的外部决定因素对于阐明珊瑚在海洋生态系统中的作用以及解释它们对污染和全球气候变化的敏感性至关重要。在此,我们扩展了之前提出的用于模拟分支珊瑚生长和形态的模型,并将模拟形态与奇异鹿角珊瑚(Madracis mirabilis)的三维(3D)图像进行比较。对奇异鹿角珊瑚骨骼的模拟实验和同位素分析表明,溶解无机碳(DIC)的外部梯度决定了分支光合珊瑚的形态发生。在模拟中,我们使用了基于珊瑚虫局部相互作用的增生生长第一原理模型。该模型中唯一的物种特异性信息是珊瑚虫的平均大小。从流动水槽和模拟研究中可知,在分支群体内部会形成一个相对较大的停滞且以扩散为主的区域。我们在模型中通过假设生长完全由扩散限制过程驱动来利用这一信息,其中DIC供应是限制因素。在这种模型约束下,可以生成与实际群体的3D图像几乎无法区分的形态。