Suppr超能文献

分支珊瑚奇妙鹿角珊瑚的形态发生

Morphogenesis of the branching reef coral Madracis mirabilis.

作者信息

Kaandorp Jaap A, Sloot Peter M A, Merks Roeland M H, Bak Rolf P M, Vermeij Mark J A, Maier Cornelia

机构信息

Section Computational Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.

出版信息

Proc Biol Sci. 2005 Jan 22;272(1559):127-33. doi: 10.1098/rspb.2004.2934.

Abstract

Understanding external deciding factors in growth and morphology of reef corals is essential to elucidate the role of corals in marine ecosystems, and to explain their susceptibility to pollution and global climate change. Here, we extend on a previously presented model for simulating the growth and form of a branching coral and we compare the simulated morphologies to three-dimensional (3D) images of the coral species Madracis mirabilis. Simulation experiments and isotope analyses of M. mirabilis skeletons indicate that external gradients of dissolved inorganic carbon (DIC) determine the morphogenesis of branching, phototrophic corals. In the simulations we use a first principle model of accretive growth based on local interactions between the polyps. The only species-specific information in the model is the average size of a polyp. From flow tank and simulation studies it is known that a relatively large stagnant and diffusion dominated region develops within a branching colony. We have used this information by assuming in our model that growth is entirely driven by a diffusion-limited process, where DIC supply represents the limiting factor. With such model constraints it is possible to generate morphologies that are virtually indistinguishable from the 3D images of the actual colonies.

摘要

了解影响珊瑚礁珊瑚生长和形态的外部决定因素对于阐明珊瑚在海洋生态系统中的作用以及解释它们对污染和全球气候变化的敏感性至关重要。在此,我们扩展了之前提出的用于模拟分支珊瑚生长和形态的模型,并将模拟形态与奇异鹿角珊瑚(Madracis mirabilis)的三维(3D)图像进行比较。对奇异鹿角珊瑚骨骼的模拟实验和同位素分析表明,溶解无机碳(DIC)的外部梯度决定了分支光合珊瑚的形态发生。在模拟中,我们使用了基于珊瑚虫局部相互作用的增生生长第一原理模型。该模型中唯一的物种特异性信息是珊瑚虫的平均大小。从流动水槽和模拟研究中可知,在分支群体内部会形成一个相对较大的停滞且以扩散为主的区域。我们在模型中通过假设生长完全由扩散限制过程驱动来利用这一信息,其中DIC供应是限制因素。在这种模型约束下,可以生成与实际群体的3D图像几乎无法区分的形态。

相似文献

1
Morphogenesis of the branching reef coral Madracis mirabilis.
Proc Biol Sci. 2005 Jan 22;272(1559):127-33. doi: 10.1098/rspb.2004.2934.
2
A comparison between coral colonies of the genus Madracis and simulated forms.
Proc Biol Sci. 2010 Dec 7;277(1700):3555-61. doi: 10.1098/rspb.2010.0957. Epub 2010 Jun 23.
3
Simulation and analysis of flow patterns around the scleractinian coral Madracis mirabilis (Duchassaing and Michelotti).
Philos Trans R Soc Lond B Biol Sci. 2003 Sep 29;358(1437):1551-7. doi: 10.1098/rstb.2003.1339.
4
Polyp oriented modelling of coral growth.
J Theor Biol. 2004 Jun 21;228(4):559-76. doi: 10.1016/j.jtbi.2004.02.020.
5
The dynamics of architectural complexity on coral reefs under climate change.
Glob Chang Biol. 2015 Jan;21(1):223-35. doi: 10.1111/gcb.12698. Epub 2014 Sep 9.
6
Morphological models of radiate accretive growth and the influence of hydrodynamics.
J Theor Biol. 2001 Apr 7;209(3):257-74. doi: 10.1006/jtbi.2001.2261.
7
Fecundity and the demographic strategies of coral morphologies.
Ecology. 2016 Dec;97(12):3485-3493. doi: 10.1002/ecy.1588.
8
The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.
Mar Environ Res. 2015 Jul;108:45-54. doi: 10.1016/j.marenvres.2015.04.009. Epub 2015 Apr 27.
9
Among-species variation in the energy budgets of reef-building corals: scaling from coral polyps to communities.
J Exp Biol. 2015 Dec;218(Pt 24):3866-77. doi: 10.1242/jeb.124396. Epub 2015 Oct 20.
10
Corals concentrate dissolved inorganic carbon to facilitate calcification.
Nat Commun. 2014 Dec 22;5:5741. doi: 10.1038/ncomms6741.

引用本文的文献

1
A generalized numerical model for clonal growth in scleractinian coral colonies.
Proc Biol Sci. 2024 Sep;291(2030):20241327. doi: 10.1098/rspb.2024.1327. Epub 2024 Sep 13.
2
Using the Goldilocks Principle to model coral ecosystem engineering.
Proc Biol Sci. 2021 Aug 11;288(1956):20211260. doi: 10.1098/rspb.2021.1260.
3
Effects of coral colony morphology on turbulent flow dynamics.
PLoS One. 2020 Oct 7;15(10):e0225676. doi: 10.1371/journal.pone.0225676. eCollection 2020.
4
The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals.
J R Soc Interface. 2018 Dec 21;15(149):20180448. doi: 10.1098/rsif.2018.0448.
5
The effect of allometric scaling in coral thermal microenvironments.
PLoS One. 2017 Oct 12;12(10):e0184214. doi: 10.1371/journal.pone.0184214. eCollection 2017.
6
Skeletal light-scattering accelerates bleaching response in reef-building corals.
BMC Ecol. 2016 Mar 21;16:10. doi: 10.1186/s12898-016-0061-4.
7
Coral-algae metabolism and diurnal changes in the CO2-carbonate system of bulk sea water.
PeerJ. 2014 May 22;2:e378. doi: 10.7717/peerj.378. eCollection 2014.
8
A semi-automatic method to extract canal pathways in 3D micro-CT images of Octocorals.
PLoS One. 2014 Jan 23;9(1):e85557. doi: 10.1371/journal.pone.0085557. eCollection 2014.
9
Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching.
PLoS One. 2013 Apr 22;8(4):e61492. doi: 10.1371/journal.pone.0061492. Print 2013.
10
Modelling growth and form of the scleractinian coral Pocillopora verrucosa and the influence of hydrodynamics.
PLoS Comput Biol. 2013;9(1):e1002849. doi: 10.1371/journal.pcbi.1002849. Epub 2013 Jan 10.

本文引用的文献

1
Flexibility in algal endosymbioses shapes growth in reef corals.
Science. 2004 Jun 4;304(5676):1492-4. doi: 10.1126/science.1095733.
2
Polyp oriented modelling of coral growth.
J Theor Biol. 2004 Jun 21;228(4):559-76. doi: 10.1016/j.jtbi.2004.02.020.
3
Simulation and analysis of flow patterns around the scleractinian coral Madracis mirabilis (Duchassaing and Michelotti).
Philos Trans R Soc Lond B Biol Sci. 2003 Sep 29;358(1437):1551-7. doi: 10.1098/rstb.2003.1339.
4
Models of coral growth: spontaneous branching, compactification and the Laplacian growth assumption.
J Theor Biol. 2003 Sep 21;224(2):153-66. doi: 10.1016/s0022-5193(03)00140-1.
6
Influence of stagnant zones on transient and asymptotic dispersion in macroscopically homogeneous porous media.
Phys Rev Lett. 2002 Jun 10;88(23):234501. doi: 10.1103/PhysRevLett.88.234501. Epub 2002 May 24.
8
Morphological models of radiate accretive growth and the influence of hydrodynamics.
J Theor Biol. 2001 Apr 7;209(3):257-74. doi: 10.1006/jtbi.2001.2261.
9
Effect of Nutrient Diffusion and Flow on Coral Morphology.
Phys Rev Lett. 1996 Sep 9;77(11):2328-2331. doi: 10.1103/PhysRevLett.77.2328.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验