Suppr超能文献

使用贝塞尔K型密度的图像贝叶斯小波估计器的解析形式。

Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities.

作者信息

Fadili Jalal M, Boubchir Larbi

机构信息

Image Processing Group GREYC CNRS UMR 6072 ENSICAEN 6, 14050 Caen, France.

出版信息

IEEE Trans Image Process. 2005 Feb;14(2):231-40. doi: 10.1109/tip.2004.840704.

Abstract

A novel Bayesian nonparametric estimator in the Wavelet domain is presented. In this approach, a prior model is imposed on the wavelet coefficients designed to capture the sparseness of the wavelet expansion. Seeking probability models for the marginal densities of the wavelet coefficients, the new family of Bessel K forms (BKF) densities are shown to fit very well to the observed histograms. Exploiting this prior, we designed a Bayesian nonlinear denoiser and we derived a closed form for its expression. We then compared it to other priors that have been introduced in the literature, such as the generalized Gaussian density (GGD) or the alpha-stable models, where no analytical form is available for the corresponding Bayesian denoisers. Specifically, the BKF model turns out to be a good compromise between these two extreme cases (hyperbolic tails for the alpha-stable and exponential tails for the GGD). Moreover, we demonstrate a high degree of match between observed and estimated prior densities using the BKF model. Finally, a comparative study is carried out to show the effectiveness of our denoiser which clearly outperforms the classical shrinkage or thresholding wavelet-based techniques.

摘要

提出了一种小波域中的新型贝叶斯非参数估计器。在这种方法中,对小波系数施加了一个先验模型,旨在捕捉小波展开的稀疏性。在寻找小波系数边际密度的概率模型时,贝塞尔K形式(BKF)密度的新族被证明与观测直方图拟合得非常好。利用这个先验,我们设计了一个贝叶斯非线性去噪器,并推导了其表达式的封闭形式。然后,我们将其与文献中引入的其他先验进行了比较,如广义高斯密度(GGD)或α稳定模型,对于相应的贝叶斯去噪器,它们没有解析形式。具体而言,BKF模型在这两种极端情况(α稳定模型的双曲线尾部和GGD的指数尾部)之间是一个很好的折衷。此外,我们使用BKF模型证明了观测到的先验密度与估计的先验密度之间有高度匹配。最后,进行了一项比较研究,以表明我们的去噪器的有效性,它明显优于基于经典收缩或阈值处理的小波技术。

相似文献

1
Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities.
IEEE Trans Image Process. 2005 Feb;14(2):231-40. doi: 10.1109/tip.2004.840704.
2
Wavelet-based Bayesian image estimation: from marginal and bivariate prior models to multivariate prior models.
IEEE Trans Image Process. 2008 Apr;17(4):469-81. doi: 10.1109/TIP.2008.918018.
3
Analysis on multiresolution mosaic images.
IEEE Trans Image Process. 2004 Jul;13(7):952-9. doi: 10.1109/tip.2004.828416.
4
Bayes classification of online arabic characters by Gibbs modeling of class conditional densities.
IEEE Trans Pattern Anal Mach Intell. 2008 Jul;30(7):1121-31. doi: 10.1109/TPAMI.2007.70753.
5
Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors.
IEEE Trans Image Process. 2006 Apr;15(4):937-51. doi: 10.1109/tip.2005.863972.
6
Thresholding in edge detection: a statistical approach.
IEEE Trans Image Process. 2004 Jul;13(7):927-36. doi: 10.1109/tip.2004.828404.
7
Computationally efficient wavelet affine invariant functions for shape recognition.
IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1095-9. doi: 10.1109/TPAMI.2004.39.
8
Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor.
IEEE Trans Pattern Anal Mach Intell. 2005 Feb;27(2):278-81. doi: 10.1109/TPAMI.2005.38.
9
Analysis of planar shapes using geodesic paths on shape spaces.
IEEE Trans Pattern Anal Mach Intell. 2004 Mar;26(3):372-83. doi: 10.1109/TPAMI.2004.1262333.
10
A novel document ranking method using the discrete cosine transform.
IEEE Trans Pattern Anal Mach Intell. 2005 Jan;27(1):130-5. doi: 10.1109/TPAMI.2005.2.

引用本文的文献

1
An Adaptive Rate Blocked Compressive Sensing Method for Video.
Entropy (Basel). 2021 Jul 31;23(8):1002. doi: 10.3390/e23081002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验