Suppr超能文献

[肠杆菌科细菌对β-内酰胺酶抗生素的耐药机制]

[Mechanisms of resistance in Enterobacteriaceae towards beta-lactamase antibiotics].

作者信息

Susić Edita

机构信息

Sluzba za mikrobiologiju i parasitologiju, Zavod za javno zdravstvo Sibensko-kninske zupanije, Sibenik, Hrvatska.

出版信息

Acta Med Croatica. 2004;58(4):307-12.

Abstract

Except for Salmonella spp., all Enterobacteriaceae produce intrinsic chromosomal encoded beta-lactamases which, beside their physiologic role in cell-wall synthesis and natural beta-lactam protection, are responsible for intrinsic resistance of individual species among Enterobacteriaceae. E. coli and Shigella spp. produce a small amount of AmpC beta-lactamases and are susceptible to ampicillin and other beta-lactam antibiotic agents. Enterobacter spp, C. freundii, Serratia spp., M. morganii, P. stuarti and P. rettgeri produce small amounts of inducible AmpC beta-lactamases which are not inhibited by beta-lactamases inhibitor, causing intrinsic resistance to ampicillin, co-amoxiclav and first-generation cephalosporins. K. pneumoniae produces small amounts of SHV-1 beta-lactamases, and K. oxytoca chromosomal K1 beta-lactamase, causing resistance to ampicillin, carbencillin, ticarcillin and attenuated zone of inhibition to piperacillin, compared to piperacillin with tazobactam. They are susceptible to beta-lactamase inhibitors. Whereas P. mirabilis shows a minor chromosomal expression of beta-lactamases, P. vulgaris produces chromosomal beta-lactamases of class A (cefuroximases), causing resistance to ampicillin, ticarcillin, and first- and second-generation cephalosporins. Antibiotics have caused the appearance of acquired or secondary beta-lactamases, with the sole function of protecting bacteria from antibiotics. The production of broad-spectrum beta-lactamases (TEM-1, TEM-2, SHV-1, OXA-1) results in resistance to ampicillin, ticarcillin, first-generation cephalosporins and piperacillin. A high level of beta-lactamases leads to resistance to their inhibitors. The plasmid-mediated extended-spectrum beta-lactamases (ESBLs) are of increasing concern. Most are mutants of classic TEM- and SHV-beta-lactamases types. Unlike these parent enzymes, ESBLs hydrolyze oxymino-cephalosporins such as cefuroxime, cefotaxime, ceftriaxone, ceftizoxime, ceftazidime, cefpirome and cefepime, aztreonam, as well as penicillins and other cephalosporins, except for cephamycin (cefoxitin and cefotetan). They are inhibited by beta-lactamase inhibitors. AmpC beta-lactamases are chromosomal and inducible in most Enterobacter spp., C. freundii, Serratia spp., M. morganii and Providentia spp. They are resistant to almost all penicillins and cephalosporins, to beta-lactamase inhibitors and aztreonam, and are susceptible to cefepime and carbapenems as well. Plasmid-mediated AmpC beta-lactamases have arisen through the transfer of chromosomal genes for the inducible AmpC beta-lactamase onto plasmids. All plasmid-mediated AmpC beta-lactamases have similar substrate profiles to the parental enzymes from which they appear to be derived. With one exception, plasmid-mediated AmpCs differ from chromosomal AmpCs in being uninducible. The National Committee for Clinical Laboratory Standards (NCCLS) has issued recommendations for ESBL screening and confirmation for isolates of E. coli, K. pneumoniae and K. oxytoca. No NCCLS recommendations exist for ESBLs detection and reporting for other organisms or for detecting plasmid-mediated AmpC beta-lactamases. High-level expression of AmpC may prevent recognition of an ESBL in species that produce a chromosomally encoded inducible AmpC beta-lactamase. AmpC-inducible species (e. g. Enterobacter spp. and C. freundii) can be recognized by cefoxitin/cefotaxime disk antagonism tests. Since clinical laboratories are first to encounter bacteria with new forms of antibiotic resistance, they need appropriate tools to recognize these bacteria, including trained staff with sufficient time and equipment to follow up important observations. Because bacterial pathogenes are constantly changing, training must be an ongoing process.

摘要

除沙门氏菌属外,所有肠杆菌科细菌都产生内在的染色体编码β-内酰胺酶,这些酶除了在细胞壁合成和天然β-内酰胺保护中发挥生理作用外,还导致肠杆菌科中个别菌种的内在耐药性。大肠杆菌和志贺氏菌属产生少量AmpCβ-内酰胺酶,对氨苄西林和其他β-内酰胺类抗生素敏感。阴沟肠杆菌、弗氏柠檬酸杆菌、沙雷氏菌属、摩根氏菌、斯氏普罗威登斯菌和雷氏普罗威登斯菌产生少量可诱导的AmpCβ-内酰胺酶,这些酶不受β-内酰胺酶抑制剂抑制,导致对氨苄西林、阿莫西林克拉维酸和第一代头孢菌素产生内在耐药性。肺炎克雷伯菌产生少量SHV-1β-内酰胺酶,产酸克雷伯菌产生染色体K1β-内酰胺酶,导致对氨苄西林、羧苄西林、替卡西林耐药,与哌拉西林他唑巴坦相比,对哌拉西林的抑菌圈减弱。它们对β-内酰胺酶抑制剂敏感。奇异变形杆菌显示出少量染色体β-内酰胺酶表达,普通变形杆菌产生A类染色体β-内酰胺酶(头孢呋辛酶),导致对氨苄西林、替卡西林以及第一代和第二代头孢菌素耐药。抗生素导致了获得性或继发性β-内酰胺酶的出现,其唯一功能是保护细菌免受抗生素影响。广谱β-内酰胺酶(TEM-1、TEM-2、SHV-1、OXA-1)的产生导致对氨苄西林、替卡西林、第一代头孢菌素和哌拉西林耐药。高水平的β-内酰胺酶导致对其抑制剂耐药。质粒介导的超广谱β-内酰胺酶(ESBLs)越来越受到关注。大多数是经典TEM-和SHV-β-内酰胺酶类型的突变体。与这些亲本酶不同,ESBLs水解氧亚氨基头孢菌素,如头孢呋辛、头孢噻肟、头孢曲松、头孢唑肟、头孢他啶、头孢匹罗和头孢吡肟、氨曲南,以及青霉素和其他头孢菌素,但不包括头霉素(头孢西丁和头孢替坦)。它们受β-内酰胺酶抑制剂抑制。AmpCβ-内酰胺酶在大多数阴沟肠杆菌、弗氏柠檬酸杆菌、沙雷氏菌属、摩根氏菌和普罗威登斯菌属中是染色体性且可诱导产生的。它们对几乎所有青霉素和头孢菌素、β-内酰胺酶抑制剂和氨曲南耐药,对头孢吡肟和碳青霉烯类敏感。质粒介导的AmpCβ-内酰胺酶是通过将可诱导AmpCβ-内酰胺酶的染色体基因转移到质粒上产生的。所有质粒介导的AmpCβ-内酰胺酶与它们似乎衍生而来的亲本酶具有相似的底物谱。除了一个例外,质粒介导的AmpCβ-内酰胺酶与染色体AmpCβ-内酰胺酶的不同之处在于它们不可诱导。美国国家临床实验室标准委员会(NCCLS)已发布关于大肠杆菌、肺炎克雷伯菌和产酸克雷伯菌分离株的ESBL筛选和确认的建议,但对于其他微生物的ESBL检测及报告或质粒介导的AmpCβ-内酰胺酶检测,尚无NCCLS建议。在产生染色体编码可诱导AmpCβ-内酰胺酶的菌种中,AmpC的高水平表达可能会妨碍ESBL的识别。AmpC可诱导的菌种(如阴沟肠杆菌和弗氏柠檬酸杆菌)可通过头孢西丁/头孢噻肟纸片拮抗试验识别。由于临床实验室最先遇到具有新形式抗生素耐药性的细菌,他们需要适当的工具来识别这些细菌,包括训练有素的工作人员以及足够的时间和设备来跟进重要观察结果。由于细菌病原体不断变化,培训必须是一个持续的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验