Knowles A, Shabala S
CRC for Sustainable Production Forestry, Private Bag 12, Hobart, Tas 7001, Australia.
J Membr Biol. 2004 Nov;202(1):51-9. doi: 10.1007/s00232-004-0719-2.
Ion-selective microelectrodes are a powerful tool in studies on various aspects of cell membrane biology in both animal and plant tissues. Further application of this technique is, however, limited to a large extent by the problem of non-ideal selectivity of the liquid ion exchanger used in the preparation of microelectrodes for ion flux measurements. Because of this problem, which is persistent in many commercial liquid ion exchangers, the microelectrode does not discriminate between the ion of interest and other interfering ions (for example, Mg2+ and Ca2+; Na+ and K+), thereby leading to inaccurate concentration readings and, consequently, inaccurate flux calculations. In this work we show that the existing analytical procedure to overcome this problem, using the inverted Nicolsky-Eisenman equation, is inadequate, and suggest an alternative analytical procedure that can be applied directly to the data obtained with commercially available liquid ion exchangers. We show that this alternative procedure allows accurate measurement of ionic concentrations with non-ideal ion-selective microelectrodes in the presence of interfering ions, and illustrate the method by direct experiment using Ca2+ and Mg2+ as a "case study". Several more examples are given, further illustrating practical applications of the method for study of plant responses to salinity, osmotic and reactive oxygen species stresses.
离子选择性微电极是研究动物和植物组织细胞膜生物学各个方面的有力工具。然而,该技术的进一步应用在很大程度上受到用于制备离子通量测量微电极的液体离子交换剂非理想选择性问题的限制。由于这个问题在许多商业液体离子交换剂中持续存在,微电极无法区分目标离子和其他干扰离子(例如,Mg2+和Ca2+;Na+和K+),从而导致浓度读数不准确,进而通量计算也不准确。在这项工作中,我们表明现有的使用倒转的尼科尔斯基 - 艾森曼方程克服这个问题的分析程序是不充分的,并提出了一种可以直接应用于用市售液体离子交换剂获得的数据的替代分析程序。我们表明,这种替代程序允许在存在干扰离子的情况下用非理想离子选择性微电极准确测量离子浓度,并以Ca2+和Mg2+作为“案例研究”通过直接实验来说明该方法。还给出了几个更多的例子,进一步说明了该方法在研究植物对盐度、渗透和活性氧胁迫响应方面的实际应用。