Suppr超能文献

Carboxyl-terminal repressor domain of MBP-1 is sufficient for regression of prostate tumor growth in nude mice.

作者信息

Ghosh Asish K, Steele Robert, Ray Ratna B

机构信息

Department of Pathology and Cancer Center, Saint Louis University, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.

出版信息

Cancer Res. 2005 Feb 1;65(3):718-21.

Abstract

Prostate cancer is the most frequently diagnosed cancer in men and the second leading cause of male cancer death in the United States. Early detection and improved procedures for surgical intervention and radiation therapy have reduced the fatalities; however, there is no effective cure for men with advanced disease and additional therapy is urgently needed. We have previously shown that MBP-1 acts as a general transcriptional repressor and exerts an antiproliferative effect on several human cancer cells. MBP-1 possesses two repressor domains, located at the amino and carboxyl termini. In this study, we have examined the potential of the repressor domains of MBP-1 as a gene therapeutic candidate in regression of prostate tumor growth. Our results suggested that replication-deficient adenovirus-mediated delivery of amino-terminal (MBP-AR) or carboxyl-terminal (MBP-CR) repressor domain of MBP-1 exerted an antiproliferative effect, like the full-length MBP-1, and induced caspase-independent apoptosis in prostate cancer cells. Next, we investigated the therapeutic effectiveness of MBP-1 repressor domain on prostate tumors. When tested in human tumor xenografts in nude mice, MBP-CR suppressed prostate tumor growth more effectively than full-length MBP-1, whereas MBP-AR delayed prostate tumor growth. Together, these results suggested that MBP-CR expression has an antiproliferative effect in human prostate cancer cells, being more effective than the full-length MBP-1 in preventing tumor growth.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验