Suppr超能文献

一种用于二维化学结构的基于图的新型相似性度量方法。

A novel graph-based similarity measure for 2D chemical structures.

作者信息

Le Si Quang, Ho Tu Bao, Phan T T Hang

机构信息

Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan.

出版信息

Genome Inform. 2004;15(2):82-91.

Abstract

In this paper, we propose a graph-based method to measure the similarity between chemical compounds described by 2D form. Our main idea is to measure the similarity between two compounds based on edges, nodes, and connectivity of their common subgraphs. We applied the proposed similarity measure in combination with a clustering method to more than eleven thousand compounds in the chemical compound database KEGG/LIGAND and discovered that compound clusters with highly similar structure compounds that share common names, take part in the same pathways, and have the same requirement of enzymes in reactions. Furthermore, we discovered the surprising sameness between pathway modules identified by clusters of similar structure compounds and that identified by genomic contexts, namely, operon structures of enzyme genes.

摘要

在本文中,我们提出了一种基于图的方法来测量由二维形式描述的化合物之间的相似性。我们的主要思想是基于两个化合物的公共子图的边、节点和连通性来测量它们之间的相似性。我们将所提出的相似性度量与一种聚类方法相结合,应用于化合物数据库KEGG/LIGAND中的一万一千多种化合物,并发现具有高度相似结构的化合物的聚类,这些化合物共享通用名称,参与相同的途径,并且在反应中对酶有相同的需求。此外,我们发现由相似结构化合物的聚类所识别的途径模块与由基因组背景(即酶基因的操纵子结构)所识别的途径模块之间存在惊人的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验