Sugimoto Naoya, Iba Hitoshi
Department of Fronteir Informatics, Graduate School of Frontier Science, University of Tokyo, Japan.
Genome Inform. 2004;15(2):121-30.
We propose a dynamic differential Bayesian networks (DDBNs) and nonparametric regression model. This model is an extended model of traditional dynamic Bayesian networks (DBNs), which can incorporate temporal information in a natural way and directly handle real-valued data obtained from microarrays without any transformation. In addition, it can cope with differential information between gene expression levels, without any loss to the traditional advantage, i.e., the capability of estimating non-linear relationships between genes. We apply DDBNs to analyze simulated data and real data, i.e., Saccharomyces cerevisiae cell cycle gene expression data. We have confirmed the effectiveness of our approach in the sense that some edges have been successfully detected only by DDBNs, not by DBNs.
我们提出了一种动态差分贝叶斯网络(DDBNs)和非参数回归模型。该模型是传统动态贝叶斯网络(DBNs)的扩展模型,它能够以自然的方式整合时间信息,并直接处理从微阵列获得的实值数据,无需任何转换。此外,它可以处理基因表达水平之间的差异信息,同时不会损失传统的优势,即估计基因之间非线性关系的能力。我们将DDBNs应用于分析模拟数据和真实数据,即酿酒酵母细胞周期基因表达数据。我们已经证实了我们方法的有效性,因为有些边仅通过DDBNs成功检测到,而DBNs则未检测到。