Sarter Martin, Hasselmo Michael E, Bruno John P, Givens Ben
Department of Psychology, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA.
Brain Res Brain Res Rev. 2005 Feb;48(1):98-111. doi: 10.1016/j.brainresrev.2004.08.006.
Neurophysiological studies demonstrated that increases in cholinergic transmission in sensory areas enhance the cortical processing of thalamic inputs. Cholinergic activity also suppresses the retrieval of internal associations, thereby further promoting sensory input processing. Behavioral studies documented the role of cortical cholinergic inputs in attentional functions and capacities by demonstrating, for example, that the integrity of the cortical cholinergic input system is necessary for attentional performance, and that the activity of cortical cholinergic inputs is selectively enhanced during attentional performance. This review aims at integrating the neurophysiological and behavioral evidence on the functions of cortical cholinergic inputs and hypothesizes that the cortical cholinergic input system generally acts to optimize the processing of signals in attention-demanding contexts. Such signals 'recruit', via activation of basal forebrain corticopetal cholinergic projections, the cortical attention systems and thereby amplify the processing of attention-demanding signals (termed 'signal-driven cholinergic modulation of detection'). The activity of corticopetal cholinergic projections is also modulated by direct prefrontal projections to the basal forebrain and, indirectly, to cholinergic terminals elsewhere in the cortex; thus, cortical cholinergic inputs are also involved in the mediation of top-down effects, such as the knowledge-based augmentation of detection (see Footnote 1) of signals and the filtering of irrelevant information (termed 'cognitive cholinergic modulation of detection'). Thus, depending on the quality of signals and task characteristics, cortical cholinergic activity reflects the combined effects of signal-driven and cognitive modulation of detection. This hypothesis begins to explain signal intensity or duration-dependent performance in attention tasks, the distinct effects of cortex-wide versus prefrontal cholinergic deafferentation on attention performance, and it generates specific predictions concerning cortical acetylcholine (ACh) release in attention task-performing animals. Finally, the consequences of abnormalities in the regulation of cortical cholinergic inputs for the manifestation of the symptoms of major neuropsychiatric disorders are conceptualized in terms of dysregulation in the signal-driven and cognitive cholinergic modulation of detection processes.
神经生理学研究表明,感觉区域胆碱能传递的增加会增强丘脑输入的皮质处理。胆碱能活动还会抑制内部关联的检索,从而进一步促进感觉输入处理。行为学研究通过举例证明皮质胆碱能输入系统的完整性对于注意力表现是必要的,以及在注意力表现过程中皮质胆碱能输入的活动会选择性增强,从而记录了皮质胆碱能输入在注意力功能和能力中的作用。本综述旨在整合关于皮质胆碱能输入功能的神经生理学和行为学证据,并假设皮质胆碱能输入系统通常在需要注意力的情境中优化信号处理。此类信号通过激活基底前脑向皮质投射的胆碱能纤维,“招募”皮质注意力系统,从而放大对需要注意力信号的处理(称为“信号驱动的胆碱能检测调制”)。向皮质投射的胆碱能纤维的活动也受到前额叶直接投射到基底前脑以及间接投射到皮质其他部位胆碱能终末的调制;因此,皮质胆碱能输入也参与自上而下效应的介导,例如基于知识增强信号检测(见脚注1)和过滤无关信息(称为“认知胆碱能检测调制”)。因此,根据信号质量和任务特征,皮质胆碱能活动反映了信号驱动和认知检测调制的综合作用。这一假设开始解释注意力任务中信号强度或持续时间依赖性表现、全皮质与前额叶胆碱能去传入对注意力表现的不同影响,并对执行注意力任务动物的皮质乙酰胆碱(ACh)释放产生具体预测。最后,根据检测过程中信号驱动和认知胆碱能调制的失调,将皮质胆碱能输入调节异常对主要神经精神疾病症状表现的影响概念化。