Baskakov Ilia V, Bocharova Olga V
Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA.
Biochemistry. 2005 Feb 22;44(7):2339-48. doi: 10.1021/bi048322t.
The "protein only" hypothesis of prion propagation postulates that the abnormal isoform of the prion protein, PrP(Sc), acts as a causative and transmissible agent of prion disease. In attempt to reconstitute prion infectivity in vitro, we previously developed a cell-free conversion protocol for generating amyloid fibrils from a recombinant prion protein encompassing residues 89-231 (rPrP 89-230) [Baskakov et al. (2002) J. Biol. Chem. 277, 21140]. When inoculated into transgenic mice, these amyloid fibrils induced prion disease, which can be efficiently transmitted to both wild-type and transgenic mice [Legname et al. (2004) Science 305, 673]. Here we show that the polymerization of rPrPs into the fibrils displays a number of distinctive kinetic features that are not typical for polymerization by other amyloidogenic polypeptides. Specifically, the lag phase of polymerization showed only modest dependence on protein concentration, and the conversion reaction displayed a dramatic volume-dependent threshold effect. To explain these unique kinetic features, we proposed that the conversion reaction is regulated by the dynamics between the rates of multiplication and deactivation of self-propagating fibrillar isoforms. Our further studies demonstrated that surface-dependent sorption of fibrillar isoforms is responsible for their deactivation in vitro, while fibril fragmentation seems to account for the multiplication of the active centers of polymerization. Our findings support the hypothesis that development of prion disease is controlled by a fine dynamic balance between self-propagation and clearance/deactivation of PrP(Sc).
朊病毒传播的“仅蛋白质”假说假定,朊病毒蛋白的异常异构体PrP(Sc)是朊病毒疾病的致病和可传播因子。为了在体外重建朊病毒感染性,我们之前开发了一种无细胞转化方案,用于从包含89 - 231位残基的重组朊病毒蛋白(rPrP 89 - 230)生成淀粉样纤维[Baskakov等人(2002年)《生物化学杂志》277卷,21140页]。当将这些淀粉样纤维接种到转基因小鼠体内时,会诱发朊病毒疾病,并且该疾病能够有效地传播给野生型和转基因小鼠[Legname等人(2004年)《科学》305卷,673页]。在此我们表明,rPrP聚合成纤维显示出许多独特的动力学特征,这些特征对于其他淀粉样生成多肽的聚合来说并不典型。具体而言,聚合的延迟期仅对蛋白质浓度有适度的依赖性,并且转化反应表现出显著的体积依赖性阈值效应。为了解释这些独特的动力学特征,我们提出转化反应受自我传播的纤维状异构体的增殖速率和失活速率之间的动力学调控。我们进一步的研究表明,纤维状异构体的表面依赖性吸附是其在体外失活的原因,而纤维片段化似乎是聚合活性中心增殖的原因。我们的研究结果支持以下假说:朊病毒疾病的发展受PrP(Sc)的自我传播与清除/失活之间精确的动态平衡控制。