Suppr超能文献

γ-分泌酶的初始底物结合位点位于早老素上靠近活性位点的位置。

The initial substrate-binding site of gamma-secretase is located on presenilin near the active site.

作者信息

Kornilova Anna Y, Bihel Frédéric, Das Chittaranjan, Wolfe Michael S

机构信息

Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3230-5. doi: 10.1073/pnas.0407640102. Epub 2005 Feb 18.

Abstract

gamma-Secretase is a structurally enigmatic multiprotein complex that catalyzes intramembrane proteolysis of a variety of substrates, including the amyloid beta-protein precursor of Alzheimer's disease and the Notch receptor essential to cell differentiation. The active site of this transmembrane aspartyl protease apparently lies at the interface between two subunits of presenilin-1 (PS1); however, evidence suggests the existence of an initial substrate-binding site that is distinct from the active site. Here, we report that photoaffinity probes based on potent helical peptide inhibitors and designed to mimic the amyloid beta-protein precursor substrate bind specifically to the PS subunit interface, at a site close to the active site. The location of the helical peptide-binding site suggests that substrate passes between the two PS1 subunits to access the active site. An aggressive Alzheimer-causing mutation in PS1 strongly reduced photolabeling by a transition-state analogue but not by helical peptides, providing biochemical evidence that the pathological effect of this PS mutation is due to alteration of the active-site topography.

摘要

γ-分泌酶是一种结构神秘的多蛋白复合物,可催化多种底物的膜内蛋白水解,包括阿尔茨海默病的淀粉样β蛋白前体以及细胞分化所必需的Notch受体。这种跨膜天冬氨酸蛋白酶的活性位点显然位于早老素-1(PS1)两个亚基之间的界面处;然而,有证据表明存在一个与活性位点不同的初始底物结合位点。在此,我们报告基于强效螺旋肽抑制剂并设计用于模拟淀粉样β蛋白前体底物的光亲和探针特异性结合到PS亚基界面,位于靠近活性位点的一个位点。螺旋肽结合位点的位置表明底物在两个PS1亚基之间通过以进入活性位点。PS1中一种导致阿尔茨海默病的侵袭性突变极大地降低了过渡态类似物的光标记,但未降低螺旋肽的光标记,这提供了生化证据表明该PS突变的病理效应是由于活性位点拓扑结构的改变。

相似文献

1
The initial substrate-binding site of gamma-secretase is located on presenilin near the active site.
Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3230-5. doi: 10.1073/pnas.0407640102. Epub 2005 Feb 18.
3
The GxGD motif of presenilin contributes to catalytic function and substrate identification of gamma-secretase.
J Neurosci. 2006 Apr 5;26(14):3821-8. doi: 10.1523/JNEUROSCI.5354-05.2006.
7
gamma-Secretase inhibitors as molecular probes of presenilin function.
J Mol Neurosci. 2001 Oct;17(2):199-204. doi: 10.1385/JMN:17:2:199.
8
Activity-dependent isolation of the presenilin- gamma -secretase complex reveals nicastrin and a gamma substrate.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2720-5. doi: 10.1073/pnas.052436599. Epub 2002 Feb 26.
9
A presenilin dimer at the core of the gamma-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13075-80. doi: 10.1073/pnas.1735338100. Epub 2003 Oct 17.

引用本文的文献

1
Familial Alzheimer mutations stabilize synaptotoxic γ-secretase-substrate complexes.
Cell Rep. 2024 Feb 27;43(2):113761. doi: 10.1016/j.celrep.2024.113761. Epub 2024 Feb 13.
4
An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations.
Biophys J. 2022 Jun 21;121(12):2330-2344. doi: 10.1016/j.bpj.2022.05.023. Epub 2022 May 20.
5
Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1.
RSC Adv. 2019 Jul 4;9(36):20901-20916. doi: 10.1039/c9ra02623a. eCollection 2019 Jul 1.
6
Structure and mechanism of the γ-secretase intramembrane protease complex.
Curr Opin Struct Biol. 2022 Jun;74:102373. doi: 10.1016/j.sbi.2022.102373. Epub 2022 Apr 20.
7
Targeting γ-Secretase for Familial Alzheimer's Disease.
Med Chem Res. 2021 Jul;30(7):1321-1327. doi: 10.1007/s00044-021-02744-3. Epub 2021 May 27.
8
Specific Mutations in Aph1 Cause γ-Secretase Activation.
Int J Mol Sci. 2022 Jan 3;23(1):507. doi: 10.3390/ijms23010507.
9
Design of Transmembrane Mimetic Structural Probes to Trap Different Stages of γ-Secretase-Substrate Interaction.
J Med Chem. 2021 Oct 28;64(20):15367-15378. doi: 10.1021/acs.jmedchem.1c01395. Epub 2021 Oct 14.
10
Role of cholesterol in substrate recognition by [Formula: see text]-secretase.
Sci Rep. 2021 Jul 26;11(1):15213. doi: 10.1038/s41598-021-94618-2.

本文引用的文献

1
Intramembrane proteolysis: theme and variations.
Science. 2004 Aug 20;305(5687):1119-23. doi: 10.1126/science.1096187.
2
Discovery of a Subnanomolar helical D-tridecapeptide inhibitor of gamma-secretase.
J Med Chem. 2004 Jul 29;47(16):3931-3. doi: 10.1021/jm049788c.
3
Designed helical peptides inhibit an intramembrane protease.
J Am Chem Soc. 2003 Oct 1;125(39):11794-5. doi: 10.1021/ja037131v.
5
Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6382-7. doi: 10.1073/pnas.1037392100. Epub 2003 May 9.
6
Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex.
Neuron. 2003 Apr 10;38(1):9-12. doi: 10.1016/s0896-6273(03)00205-8.
7
Reconstitution of gamma-secretase activity.
Nat Cell Biol. 2003 May;5(5):486-8. doi: 10.1038/ncb960.
8
The role of presenilin cofactors in the gamma-secretase complex.
Nature. 2003 Mar 27;422(6930):438-41. doi: 10.1038/nature01506. Epub 2003 Mar 16.
9
Engineering exosite peptides for complete inhibition of factor VIIa using a protease switch with substrate phage.
J Biol Chem. 2003 Jun 13;278(24):21823-30. doi: 10.1074/jbc.M300951200. Epub 2003 Mar 25.
10
Differential effects of inhibitors on the gamma-secretase complex. Mechanistic implications.
J Biol Chem. 2003 May 9;278(19):16470-3. doi: 10.1074/jbc.C300019200. Epub 2003 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验