Suppr超能文献

烟碱型乙酰胆碱受体跨膜结构域内M2螺旋的分子动力学模拟:结构与集体运动

Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions.

作者信息

Hung Andrew, Tai Kaihsu, Sansom Mark S P

机构信息

Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.

出版信息

Biophys J. 2005 May;88(5):3321-33. doi: 10.1529/biophysj.104.052878. Epub 2005 Feb 18.

Abstract

Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.

摘要

对嵌入双层模拟辛烷板中的电鳐烟碱型乙酰胆碱受体的跨膜区域进行了多次纳秒级持续时间的分子动力学模拟。M2螺旋和M2-M3环区域可自由移动,而外部(M1、M3、M4)螺旋束的主链受到限制。在整个模拟过程中,M2螺旋在很大程度上保留了它们的氢键模式,只是在螺旋末端和环区域有一些扭曲。所有M2螺旋都表现出弯曲运动,铰链点位于中央疏水门区域附近(对应于αL251和αV255残基)。M2螺旋的弯曲运动导致在拟疏水门区域的孔出现一定程度的动态变窄。沿模拟轨迹对各种结构的玻恩能量分布计算表明,所采样的M2束构象对应于通道的关闭构象。对每个M2螺旋以及五螺旋M2束进行主成分分析,揭示了可能与通道功能相关的协同运动。使用各向异性网络模型进行的正常模式分析揭示了与主成分分析所识别的类似的集体运动。

相似文献

2
Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor.
Biophys J. 2007 Oct 15;93(8):2622-34. doi: 10.1529/biophysj.107.109843. Epub 2007 Jun 15.
7
An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
Biophys J. 2006 Feb 1;90(3):799-810. doi: 10.1529/biophysj.105.067868. Epub 2005 Nov 11.
8
Kinked structures of isolated nicotinic receptor M2 helices: a molecular dynamics study.
Biopolymers. 1994 Dec;34(12):1647-57. doi: 10.1002/bip.360341209.
9
Mechanics of channel gating of the nicotinic acetylcholine receptor.
PLoS Comput Biol. 2008 Jan;4(1):e19. doi: 10.1371/journal.pcbi.0040019.

引用本文的文献

2
Nicotinic receptor pharmacology in silico: Insights and challenges.
Neuropharmacology. 2020 Oct 15;177:108257. doi: 10.1016/j.neuropharm.2020.108257. Epub 2020 Jul 29.
4
A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation.
PLoS One. 2015 Jul 24;10(7):e0133011. doi: 10.1371/journal.pone.0133011. eCollection 2015.
5
Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements.
J Phys Chem B. 2014 Apr 24;118(16):4370-7. doi: 10.1021/jp500267y. Epub 2014 Apr 11.
6
Activation and proton transport mechanism in influenza A M2 channel.
Biophys J. 2013 Nov 5;105(9):2036-45. doi: 10.1016/j.bpj.2013.08.030.
7
Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation.
J Comput Theor Nanosci. 2010 Dec;7(12):2481-2500. doi: 10.1166/jctn.2010.1636.
8
GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study.
Biophys J. 2012 Nov 21;103(10):2071-81. doi: 10.1016/j.bpj.2012.10.016. Epub 2012 Nov 20.
9
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
10
Normal mode gating motions of a ligand-gated ion channel persist in a fully hydrated lipid bilayer model.
ACS Chem Neurosci. 2010 Aug 18;1(8):552-8. doi: 10.1021/cn100026t. Epub 2010 Jun 11.

本文引用的文献

2
The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
Mol Membr Biol. 2005 May-Jun;22(3):151-62. doi: 10.1080/09687860500063340.
5
A speed limit for conformational change of an allosteric membrane protein.
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):87-92. doi: 10.1073/pnas.0406777102. Epub 2004 Dec 23.
6
Dynamite: a simple way to gain insight into protein motions.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2280-7. doi: 10.1107/S0907444904019171. Epub 2004 Nov 26.
7
Not ions alone: barriers to ion permeation in nanopores and channels.
J Am Chem Soc. 2004 Nov 17;126(45):14694-5. doi: 10.1021/ja045271e.
8
Structural dynamics of the M4 transmembrane segment during acetylcholine receptor gating.
Structure. 2004 Oct;12(10):1909-18. doi: 10.1016/j.str.2004.08.004.
10
A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.
Biophys J. 2004 Aug;87(2):792-9. doi: 10.1529/biophysj.103.039396.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验