Suppr超能文献

Regulation of insulin-like growth factor I production in rat C6 glioma cells: possible role as an autocrine/paracrine growth factor.

作者信息

Lowe W L, Meyer T, Karpen C W, Lorentzen L R

机构信息

Department of Internal Medicine, University of Iowa College of Medicine, Iowa City.

出版信息

Endocrinology. 1992 May;130(5):2683-91. doi: 10.1210/endo.130.5.1572288.

Abstract

The growth of rat glioma C6 cells, which provide an in vitro model of glial cells, is inhibited by retinoic acid and glucocorticoids, two agents which are important in brain differentiation and growth. To determine whether the growth-inhibitory effects of these agents are mediated by alterations in insulin-like growth factor I (IGF-I) production, the effects of retinoic acid and dexamethasone on IGF-I production and messenger RNA levels in C6 cells were investigated. IGF-I mRNA levels were determined using a solution hybridization/RNase protection assay. Treatment of C6 cells with dexamethasone or retinoic acid decreased IGF-I mRNA levels in a time-dependent fashion. The time course of the effect of the two agents differed, with the peak effect of dexamethasone between 6 and 12 h and the peak effect of retinoic acid at 27 h. In dose-response studies, IGF-I mRNA levels decreased to 27% of control levels (cells maintained in serum-free media) after treatment with 5 ng/ml dexamethasone, while half-maximal inhibition was achieved with approximately 0.5 ng/ml (1.4 nM) dexamethasone. Treatment with 10 microM retinoic acid decreased IGF-I mRNA levels to 24% of control levels with half-maximal inhibition occurring with approximately 0.5 microM retinoic acid. Cycloheximide prevented the inhibitory effect of these agents on IGF-I mRNA levels, suggesting that their effect is at least partly dependent upon protein synthesis. Immunoreactive IGF-I levels in media conditioned for 48 h by cells treated with dexamethasone or retinoic acid decreased to 32% and 42% of control levels, respectively. Treatment of C6 cells with retinoic acid or dexamethasone decreased thymidine incorporation into DNA. Treatment of cells with IGF-I alone had no effect on thymidine incorporation into DNA, but addition of 10 or 50 ng/ml IGF-I to dexamethasone-treated cells stimulated a small, but significant (P less than 0.01), increase in thymidine incorporation into DNA. IGF-I was not, however, able to reverse the inhibitory effect of retinoic acid. Finally, treatment of cells with 150 ng/ml of IGF binding protein 1 significantly decreased (P less than 0.01) thymidine incorporation into DNA by 17% as compared to incorporation into control cells maintained in serum-free media.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验