Wilson William G, Abrams Peter A
Department of Biology, Duke University, Durham, North Carolina 27708-0325, USA.
Am Nat. 2005 Feb;165(2):193-205. doi: 10.1086/427733. Epub 2004 Dec 28.
Two competing consumer species may coexist using a single homogeneous resource when the more efficient consumer--the one having the lowest equilibrium resource density--has a more nonlinear functional response that generates consumer-resource cycles. We extend this model of nonequilibrium coexistence, as proposed by Armstrong and McGehee, by putting the interaction into a spatial context using two frameworks: a spatially explicit individual-based model and a spatially implicit metapopulation model. We find that Armstrong and McGehee's mechanism of coexistence can operate in a spatial context. However, individual-based simulations suggest that decreased dispersal restricts coexistence in most cases, whereas differential equation models of metapopulations suggest that a low rate of dispersal between subpopulations often increases the coexistence region. This difference arises in part because of two potentially opposing effects on coexistence due to the asynchrony in the temporal dynamics at different locations. Asynchrony implies that the less efficient species is more likely to be favored in some spatial locations at any given time, which broadens the conditions for coexistence. On the other hand, asynchrony and dispersal can also reduce the amplitude of local population cycles, which restricts coexistence. The relative influence of these two effects depends on details of the population dynamics and the representation of space. Our results also demonstrate that coexistence via the Armstrong-McGehee mechanism can occur even when there is little variation in the global densities of either the consumers or the resource, suggesting that empirical studies of the mechanisms should measure densities on several spatial scales.
当更高效的消费者——即具有最低平衡资源密度的消费者——具有更非线性的功能反应从而产生消费者-资源周期时,两种相互竞争的消费者物种可以利用单一的同质资源共存。我们通过使用两种框架将这种相互作用置于空间背景中,扩展了由阿姆斯特朗和麦吉hee提出的这种非平衡共存模型:一种是空间明确的基于个体的模型,另一种是空间隐含的集合种群模型。我们发现阿姆斯特朗和麦吉hee的共存机制可以在空间背景中起作用。然而,基于个体的模拟表明,在大多数情况下,扩散的减少会限制共存,而集合种群的微分方程模型表明,亚种群之间低扩散率往往会增加共存区域。这种差异部分源于不同位置时间动态中的异步性对共存产生的两种潜在相反影响。异步性意味着在任何给定时间,效率较低的物种在某些空间位置更有可能受到青睐,这拓宽了共存的条件。另一方面,异步性和扩散也会降低局部种群周期的幅度,从而限制共存。这两种影响的相对重要性取决于种群动态的细节和空间的表示方式。我们的结果还表明,即使消费者或资源的全球密度变化很小,通过阿姆斯特朗-麦吉hee机制也可以实现共存,这表明对这些机制的实证研究应该在几个空间尺度上测量密度。