Chen Bor-Sen, Wang Yu-Chao, Wu Wei-Sheng, Li Wen-Hsiung
Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC.
Bioinformatics. 2005 Jun 1;21(11):2698-705. doi: 10.1093/bioinformatics/bti348. Epub 2005 Feb 24.
The robustness of a biochemical network is defined as the tolerance of variations in kinetic parameters with respect to the maintenance of steady state. Robustness also plays an important role in the fail-safe mechanism in the evolutionary process of biochemical networks. The purposes of this paper are to use the synergism and saturation system (S-system) representation to describe a biochemical network and to develop a robustness measure of a biochemical network subject to variations in kinetic parameters. Since most biochemical networks in nature operate close to the steady state, we consider only the robustness measurement of a biochemical network at the steady state.
We show that the upper bound of the tolerated parameter variations is related to the system matrix of a biochemical network at the steady state. Using this upper bound, we can calculate the tolerance (robustness) of a biochemical network without testing many parametric perturbations. We find that a biochemical network with a large tolerance can also better attenuate the effects of variations in rate parameters and environments. Compensatory parameter variations and network redundancy are found to be important mechanisms for the robustness of biochemical networks. Finally, four biochemical networks, such as a cascaded biochemical network, the glycolytic-glycogenolytic pathway in a perfused rat liver, the tricarboxylic acid cycle in Dictyostelium discoideum and the cAMP oscillation network in bacterial chemotaxis, are used to illustrate the usefulness of the proposed robustness measure.
生化网络的稳健性定义为在维持稳态方面动力学参数变化的耐受性。稳健性在生化网络进化过程的故障安全机制中也起着重要作用。本文的目的是使用协同饱和系统(S - 系统)表示法来描述生化网络,并开发一种针对动力学参数变化的生化网络稳健性度量方法。由于自然界中的大多数生化网络都在接近稳态的条件下运行,我们仅考虑生化网络在稳态时的稳健性度量。
我们表明,可容忍参数变化的上限与稳态时生化网络的系统矩阵相关。利用这个上限,我们无需测试许多参数扰动就可以计算生化网络的耐受性(稳健性)。我们发现具有大耐受性的生化网络也能更好地减弱速率参数和环境变化的影响。补偿性参数变化和网络冗余被发现是生化网络稳健性的重要机制。最后,使用四个生化网络,如级联生化网络、灌注大鼠肝脏中的糖酵解 - 糖原分解途径、盘基网柄菌中的三羧酸循环以及细菌趋化作用中的环磷酸腺苷振荡网络,来说明所提出的稳健性度量的有用性。