Boyle Timothy J, Bunge Scott D, Alam Todd M, Holland Gregory P, Headley Thomas J, Avilucea Gabriel
Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard SE, Albuquerque, New Mexico 87105, USA.
Inorg Chem. 2005 Mar 7;44(5):1309-18. doi: 10.1021/ic0485155.
The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR2)2 where NR2 = N(SiMe3)2 with n HOR led to the isolation of the following: n = 1 [Cd(mu-OCH2CMe3)(NR2)(py)]2 (1, py = pyridine), Cd[(mu-OC6H3(Me)(2)-2,6)2Cd(NR2)(py)]2 (2), [Cd(mu-OC6H3(CHMe2)(2)-2,6)(NR2)(py)]2 (3), [Cd(mu-OC6H3(CMe3)(2)-2,6)(NR2)(py)]2 (4), [Cd(mu-OC6H2(NH2)(3)-2,4,6)(NR2)(py)]2 (5), and n = 2 [Cd(mu-OC6H3(Me)(2)-2,6)(OC6H3(Me)(2)-2,6)(py)2]2 (6), and [Cd(mu-OC6H3(CMe3)(2)-2,6)(OC6H3(CMe3)(2)-2,6)(THF)]2 (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR2 or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four mu-OR and two terminal -NR2 ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by 1H, 13C, and 113Cd NMR along with solid-state 113Cd NMR spectroscopy. The utility of these complexes as "alternative precursors" for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize the resultant particles.
报道了用于制备CdE纳米颗粒(E = S、Se和Te)的一系列替代前驱体的合成与表征。Cd(NR2)2(其中NR2 = N(SiMe3)2)与n HOR的反应得到了以下产物:n = 1时,[Cd(μ - OCH2CMe3)(NR2)(py)]2(1,py = 吡啶)、Cd[(μ - OC6H3(Me)(2)-2,6)2Cd(NR2)(py)]2(2)、[Cd(μ - OC6H3(CHMe2)(2)-2,6)(NR2)(py)]2(3)、[Cd(μ - OC6H3(CMe3)(2)-2,6)(NR2)(py)]2(4)、[Cd(μ - OC6H2(NH2)(3)-2,4,6)(NR2)(py)]2(5);n = 2时,[Cd(μ - OC6H3(Me)(2)-2,6)(OC6H3(Me)(2)-2,6)(py)2]2(6)以及[Cd(μ - OC6H3(CMe3)(2)-2,6)(OC6H3(CMe3)(2)-2,6)(THF)]2(7)。除2之外,所有产物的X射线晶体结构均解析为通过醇盐配体桥连的离散双核单元,根据初始反应的化学计量比,还存在端基 - NR2或 - OR配体。对于2,使用四个μ - OR和两个端基 - NR2配体分离得到了一个三核物种。Cd金属中心的配位数从3到5不等,对于空间位阻较小的配体,通过与路易斯碱性溶剂结合可实现更高的配位数。这些配合物在溶液中通过1H、13C和113Cd NMR以及固态113Cd NMR光谱进行了进一步表征。探索了这些配合物作为“替代前驱体”用于可控制备纳米晶CdS、CdSe和CdTe的效用。为了合成CdE纳米晶体,从该系列化合物中选择的特定物种在配位溶剂(三辛基氧化膦)中单独加热,然后注入适当的硫族化物储备溶液。使用透射电子光谱和紫外 - 可见光谱对所得颗粒进行了表征。