Casey Charles P, Johnson Jeffrey B, Singer Steven W, Cui Qiang
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
J Am Chem Soc. 2005 Mar 9;127(9):3100-9. doi: 10.1021/ja043460r.
At high temperatures in toluene, [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)(2)H (3) undergoes hydrogen elimination in the presence of PPh(3) to produce the ruthenium phosphine complex [2,5-Ph(2)-3,4-Tol(2)-(eta(4)-C(4)CO)]Ru(PPh(3))(CO)(2) (6). In the absence of alcohols, the lack of RuH/OD exchange, a rate law first order in Ru and zero order in phosphine, and kinetic deuterium isotope effects all point to a mechanism involving irreversible formation of a transient dihydrogen ruthenium complex B, loss of H(2) to give unsaturated ruthenium complex A, and trapping by PPh(3) to give 6. DFT calculations showed that a mechanism involving direct transfer of a hydrogen from the CpOH group to form B had too high a barrier to be considered. DFT calculations also indicated that an alcohol or the CpOH group of 3 could provide a low energy pathway for formation of B. PGSE NMR measurements established that 3 is a hydrogen-bonded dimer in toluene, and the first-order kinetics indicate that two molecules of 3 are also involved in the transition state for hydrogen transfer to form B, which is the rate-limiting step. In the presence of ethanol, hydrogen loss from 3 is accelerated and RuD/OH exchange occurs 250 times faster than in its absence. Calculations indicate that the transition state for dihydrogen complex formation involves an ethanol bridge between the acidic CpOH and hydridic RuH of 3; the alcohol facilitates proton transfer and accelerates the reversible formation of dihydrogen complex B. In the presence of EtOH, the rate-limiting step shifts to the loss of hydrogen from B.
在甲苯中高温下,[2,5-二苯基-3,4-二甲基(η⁵-环戊二烯基)]钌(Ⅱ)氢羰基配合物(3)在三苯基膦(PPh₃)存在下发生氢消除反应,生成钌膦配合物[2,5-二苯基-3,4-二甲基(η⁴-环戊二烯基)]钌(Ⅱ)三苯基膦羰基配合物(6)。在没有醇类存在时,缺乏钌氢/氘交换、速率定律对钌为一级而对膦为零级以及动力学氘同位素效应均表明该反应机理涉及瞬态二氢钌配合物B的不可逆形成、氢气损失生成不饱和钌配合物A以及被PPh₃捕获生成6。密度泛函理论(DFT)计算表明,涉及氢从环戊二烯醇基直接转移形成B的机理具有过高的能垒,无法成立。DFT计算还表明,醇或配合物3的环戊二烯醇基可为B的形成提供低能量途径。脉冲梯度自旋回波(PGSE)核磁共振测量表明,3在甲苯中是氢键二聚体,一级动力学表明两个3分子也参与了氢转移形成B的过渡态,而这是速率限制步骤。在乙醇存在下,配合物3的氢损失加速,钌氘/羟基交换比不存在乙醇时快250倍。计算表明,二氢配合物形成的过渡态涉及乙醇在酸性环戊二烯醇基和配合物3的氢化钌氢之间形成桥连;醇促进质子转移并加速二氢配合物B的可逆形成。在乙醇存在下,速率限制步骤转变为B的氢损失。