Suppr超能文献

动态对比增强磁共振成像在软组织肿瘤鉴别诊断中的应用

Dynamic contrast enhanced MRI in the differential diagnosis of soft tissue tumors.

作者信息

Tuncbilek Nermin, Karakas Hakki Muammer, Okten Ozerk Omur

机构信息

Department of Radiology, School of Medicine, Trakya University, 22030 Edirne, Turkey.

出版信息

Eur J Radiol. 2005 Mar;53(3):500-5. doi: 10.1016/j.ejrad.2004.04.012.

Abstract

PURPOSE

The value of the dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in differentiating benign and malignant soft tissue tumors was investigated.

MATERIALS AND METHODS

Turbo FLASH DCE-MRI was performed on 22 subjects (2-74 years) with soft tissue tumors. Enhancement in the first min (E(max/1)), second min (E(max/2)) and maximum peak enhancement (E(max)), and steepest slope were calculated. Discriminant analyses were performed to reveal parametric differences of benign and malignant lesions.

RESULTS

Diagnosis of benign (N = 10) tumors were hemangioma (n = 3), neurogenic tumor (n = 3) lipoma (n = 2), giant cell tumor (n = 1) and desmoid (n = 1), whereas malignant lesions (N = 12) were classified as liposarcoma (n = 5), malignant fibrous histiocytoma (n = 5) and synovial sarcoma (n = 2). For malignant lesions E(max/1) was 65-198%, E(max/2) was 65-145%, E(max) was 78-198%, and steepest slope was 1.45-4.06. For benign lesions these values were 4-98%, 5-105%, 7-125% and 0.67-2.57, respectively. To determine the relation between the variables analysed, Pearson correlation coefficients were calculated. E(max) was found to be highly correlated with other variables (rxy > 0.86, P < 0.0001). Consequently, this variable was excluded from the discriminant analysis. In order to determine discrimination of malignant and benign tumors using E(max/1), E(max/2,) and steepest slope of the enhancement curve logistic regression was applied to the above mentioned data. When combined these parameters had a 95.5% of overall accuracy in classifying benign and malignant lesions (P = 0.004).

CONCLUSION

DCE-MRI parameters that thought to be the surrogate markers of tumoral microcirculation and tissue perfusion provides a specific preoperative diagnosis. Dynamic imaging parameters are therefore advocated for monitoring the effect of chemotherapy in soft tissue tumors.

摘要

目的

研究动态对比增强磁共振成像(DCE-MRI)在鉴别良恶性软组织肿瘤中的价值。

材料与方法

对22例(年龄2至74岁)患有软组织肿瘤的受试者进行了快速小角度激发(Turbo FLASH)DCE-MRI检查。计算了第1分钟(E(max/1))、第2分钟(E(max/2))的强化值、最大峰值强化(E(max))以及最陡斜率。进行判别分析以揭示良恶性病变的参数差异。

结果

诊断为良性(N = 10)的肿瘤包括血管瘤(n = 3)、神经源性肿瘤(n = 3)、脂肪瘤(n = 2)、巨细胞瘤(n = 1)和硬纤维瘤(n = 1),而恶性病变(N = 12)包括脂肪肉瘤(n = 5)、恶性纤维组织细胞瘤(n = 5)和滑膜肉瘤(n = 2)。恶性病变的E(max/1)为65 - 198%,E(max/2)为65 - 145%,E(max)为78 - 198%,最陡斜率为1.45 - 4.06。良性病变的这些值分别为4 - 98%、5 - 105%、7 - 125%和0.67 - 2.57。为确定所分析变量之间的关系,计算了Pearson相关系数。发现E(max)与其他变量高度相关(rxy > 0.86,P < 0.0001)。因此,该变量被排除在判别分析之外。为了使用E(max/1)、E(max/2)以及强化曲线的最陡斜率来确定恶性和良性肿瘤的判别情况,对上述数据应用了逻辑回归。当综合这些参数时,在区分良性和恶性病变方面总体准确率为95.5%(P = 0.004)。

结论

被认为是肿瘤微循环和组织灌注替代标志物的DCE-MRI参数可提供特异性术前诊断。因此,提倡使用动态成像参数来监测软组织肿瘤化疗的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验