Suppr超能文献

利用二级结构信息和二残基频率进行二硫键连接性预测。

Disulfide connectivity prediction using secondary structure information and diresidue frequencies.

作者信息

Ferrè F, Clote P

机构信息

Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.

出版信息

Bioinformatics. 2005 May 15;21(10):2336-46. doi: 10.1093/bioinformatics/bti328. Epub 2005 Mar 1.

Abstract

MOTIVATION

We describe a stand-alone algorithm to predict disulfide bond partners in a protein given only the amino acid sequence, using a novel neural network architecture (the diresidue neural network), and given input of symmetric flanking regions of N-terminus and C-terminus half-cystines augmented with residue secondary structure (helix, coil, sheet) as well as evolutionary information. The approach is motivated by the observation of a bias in the secondary structure preferences of free cysteines and half-cystines, and by promising preliminary results we obtained using diresidue position-specific scoring matrices.

RESULTS

As calibrated by receiver operating characteristic curves from 4-fold cross-validation, our conditioning on secondary structure allows our novel diresidue neural network to perform as well as, and in some cases better than, the current state-of-the-art method. A slight drop in performance is seen when secondary structure is predicted rather than being derived from three-dimensional protein structures.

摘要

动机

我们描述了一种独立算法,仅使用氨基酸序列,通过一种新颖的神经网络架构(二残基神经网络),并以N端和C端半胱氨酸的对称侧翼区域为输入,同时加入残基二级结构(螺旋、卷曲、片层)以及进化信息,来预测蛋白质中的二硫键配对。该方法的灵感来自于对游离半胱氨酸和半胱氨酸二级结构偏好偏差的观察,以及我们使用二残基位置特异性评分矩阵获得的有前景的初步结果。

结果

通过4折交叉验证的接收器操作特征曲线校准,我们对二级结构的条件设定使得我们新颖的二残基神经网络表现与当前最先进的方法相当,在某些情况下甚至更好。当二级结构是预测而非从三维蛋白质结构推导而来时,性能会略有下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验