Suppr超能文献

在光敏色素A信号传导过程中,HFR1被COP1 E3连接酶靶向进行翻译后蛋白水解。

HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling.

作者信息

Jang In-Cheol, Yang Jun-Yi, Seo Hak Soo, Chua Nam-Hai

机构信息

Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021, USA.

出版信息

Genes Dev. 2005 Mar 1;19(5):593-602. doi: 10.1101/gad.1247205.

Abstract

Upon activation by far-red light, phytochrome A signals are transduced through several pathways to promote photomorphogenesis. The COP1 E3 ligase represses photomorphogenesis in part by targeting transcription activators such as LAF1 and HY5 for destruction. Another positive regulator of photomorphogenesis is HFR1, a basic helix-loop-helix (bHLH) transcription factor. Here, we show that HFR1 colocalizes with COP1 in nuclear bodies, and that the HFR1 N-terminal region (amino acids 1-131) interacts with the COP1 WD40 domain. HFR1(DeltaN), an HFR1 mutant lacking the two N-terminal, COP1-interacting motifs, still localizes in nuclear bodies and retains weak affinity for COP1. Both HFR1 and HFR1(DeltaN) can be ubiquitinated by COP1, although with different efficiencies. Expression of 35S-HFR1(DeltaN) in wild-type plants confers greater hypersensitivity to FR than 35S-HFR1 expression, and only seedlings expressing 35S-HFR1(DeltaN) display constitutive photomorphogenesis. These phenotypic differences can be attributed to the instability of HFR1 compared with HFR1(DeltaN). In transgenic plants, HFR1 levels are significantly elevated upon induced expression of a dominant-negative COP1 mutant that interferes with endogenous COP1 E3 activity. Moreover, induced expression of wild-type COP1 in transgenic plants accelerates post-translational degradation of HFR1 under FR light. Taken together, our results show that HFR1 is ubiquitinated by COP1 E3 ligase and marked for post-translational degradation during photomorphogenesis.

摘要

在被远红光激活后,光敏色素A信号通过多种途径进行转导以促进光形态建成。COP1 E3连接酶部分地通过靶向诸如LAF1和HY5等转录激活因子进行降解来抑制光形态建成。光形态建成的另一个正向调节因子是HFR1,一种碱性螺旋-环-螺旋(bHLH)转录因子。在此,我们表明HFR1与COP1在核小体中共定位,并且HFR1的N端区域(氨基酸1 - 131)与COP1的WD40结构域相互作用。HFR1(DeltaN)是一种缺乏两个N端、与COP1相互作用基序的HFR1突变体,它仍定位于核小体中并且对COP1保留弱亲和力。HFR1和HFR1(DeltaN)都可以被COP1泛素化,尽管效率不同。在野生型植物中表达35S - HFR1(DeltaN)比表达35S - HFR1对远红光表现出更大的超敏性,并且只有表达35S - HFR1(DeltaN)的幼苗表现出组成型光形态建成。这些表型差异可归因于与HFR1(DeltaN)相比HFR1的不稳定性。在转基因植物中,当诱导表达干扰内源性COP1 E3活性的显性负性COP1突变体时,HFR1水平显著升高。此外,在转基因植物中诱导表达野生型COP1会加速远红光下HFR1的翻译后降解。综上所述,我们的结果表明HFR1被COP1 E3连接酶泛素化并在光形态建成过程中被标记用于翻译后降解。

相似文献

2
Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling.
Genes Dev. 2007 Aug 15;21(16):2100-11. doi: 10.1101/gad.1568207.
3
Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis.
Plant Cell. 2005 Mar;17(3):804-21. doi: 10.1105/tpc.104.030205. Epub 2005 Feb 10.
7
Reciprocal proteasome-mediated degradation of PIFs and HFR1 underlies photomorphogenic development in .
Development. 2017 May 15;144(10):1831-1840. doi: 10.1242/dev.146936. Epub 2017 Apr 18.
8
Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis.
J Theor Biol. 2011 Feb 7;270(1):31-41. doi: 10.1016/j.jtbi.2010.11.021. Epub 2010 Nov 18.

引用本文的文献

1
Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis.
Plant Direct. 2025 Feb 13;9(2):e700042. doi: 10.1002/pld3.70042. eCollection 2025 Feb.
2
Spatiotemporal regulation of anther's tapetum degeneration paved the way for a reversible male sterility system in cotton.
Plant Biotechnol J. 2025 Feb;23(2):532-548. doi: 10.1111/pbi.14518. Epub 2024 Nov 28.
3
UV-B increases active phytochrome B to suppress thermomorphogenesis and enhance UV-B stress tolerance at high temperatures.
Plant Commun. 2025 Jan 13;6(1):101142. doi: 10.1016/j.xplc.2024.101142. Epub 2024 Oct 10.
4
Organ-specific transcriptional regulation by HFR1 and HY5 in response to shade in Arabidopsis.
Front Plant Sci. 2024 Jul 31;15:1430639. doi: 10.3389/fpls.2024.1430639. eCollection 2024.
5
What is going on inside of phytochrome B photobodies?
Plant Cell. 2024 May 29;36(6):2065-2085. doi: 10.1093/plcell/koae084.
6
Arabidopsis COP1 guides stomatal response in guard cells through pH regulation.
Commun Biol. 2024 Feb 5;7(1):150. doi: 10.1038/s42003-024-05847-w.
7
Soybean reduced internode 1 determines internode length and improves grain yield at dense planting.
Nat Commun. 2023 Dec 1;14(1):7939. doi: 10.1038/s41467-023-42991-z.
8
Role of plastids and mitochondria in the early development of seedlings in dark growth conditions.
Front Plant Sci. 2023 Sep 29;14:1272822. doi: 10.3389/fpls.2023.1272822. eCollection 2023.

本文引用的文献

1
Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling.
Genes Dev. 2004 Mar 15;18(6):617-22. doi: 10.1101/gad.1187804. Epub 2004 Mar 18.
3
LAF3, a novel factor required for normal phytochrome A signaling.
Plant Physiol. 2003 Dec;133(4):1592-604. doi: 10.1104/pp.103.028480. Epub 2003 Nov 26.
5
Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization.
Curr Opin Plant Biol. 2003 Oct;6(5):453-62. doi: 10.1016/s1369-5266(03)00080-3.
6
LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1.
Nature. 2003 Jun 26;423(6943):995-9. doi: 10.1038/nature01696.
8
AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation.
Genes Dev. 2003 Feb 1;17(3):410-8. doi: 10.1101/gad.1055803.
9
SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.
Nature. 2002 Sep 12;419(6903):167-70. doi: 10.1038/nature00998.
10
Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants.
Annu Rev Plant Biol. 2002;53:329-55. doi: 10.1146/annurev.arplant.53.100301.135302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验