Terry-Lorenzo Ryan T, Roadcap David W, Otsuka Takeshi, Blanpied Thomas A, Zamorano Pedro L, Garner Craig C, Shenolikar Shirish, Ehlers Michael D
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
Mol Biol Cell. 2005 May;16(5):2349-62. doi: 10.1091/mbc.e04-12-1054. Epub 2005 Mar 2.
The majority of excitatory synapses in the mammalian brain form on filopodia and spines, actin-rich membrane protrusions present on neuronal dendrites. The biochemical events that induce filopodia and remodel these structures into dendritic spines remain poorly understood. Here, we show that the neuronal actin- and protein phosphatase-1-binding protein, neurabin-I, promotes filopodia in neurons and nonneuronal cells. Neurabin-I actin-binding domain bundled F-actin, promoted filopodia, and delayed the maturation of dendritic spines in cultured hippocampal neurons. In contrast, dimerization of neurabin-I via C-terminal coiled-coil domains and association of protein phosphatase-1 (PP1) with neurabin-I through a canonical KIXF motif inhibited filopodia. Furthermore, the expression of a neurabin-I polypeptide unable to bind PP1 delayed the maturation of neuronal filopodia into spines, reduced the synaptic targeting of AMPA-type glutamate (GluR1) receptors, and decreased AMPA receptor-mediated synaptic transmission. Reduction of endogenous neurabin levels by interference RNA (RNAi)-mediated knockdown also inhibited the surface expression of GluR1 receptors. Together, our studies suggested that disrupting the functions of a cytoskeletal neurabin/PP1 complex enhanced filopodia and impaired surface GluR1 expression in hippocampal neurons, thereby hindering the morphological and functional maturation of dendritic spines.
哺乳动物大脑中的大多数兴奋性突触形成于丝状伪足和棘突上,丝状伪足和棘突是神经元树突上富含肌动蛋白的膜性突起。诱导丝状伪足并将这些结构重塑为树突棘的生化事件仍知之甚少。在此,我们表明神经元肌动蛋白和蛋白磷酸酶-1结合蛋白神经素-I可促进神经元和非神经元细胞中的丝状伪足形成。神经素-I的肌动蛋白结合结构域可使丝状肌动蛋白成束,促进丝状伪足形成,并延迟培养的海马神经元中树突棘的成熟。相比之下,神经素-I通过C端卷曲螺旋结构域形成二聚体,以及蛋白磷酸酶-1(PP1)通过典型的KIXF基序与神经素-I结合,则会抑制丝状伪足的形成。此外,一种无法结合PP1的神经素-I多肽的表达延迟了神经元丝状伪足向棘突的成熟过程,减少了AMPA型谷氨酸(GluR1)受体的突触靶向性,并降低了AMPA受体介导的突触传递。通过干扰RNA(RNAi)介导的敲低来降低内源性神经素水平,也会抑制GluR1受体的表面表达。总之,我们的研究表明,破坏细胞骨架神经素/PP1复合物的功能会增强海马神经元中的丝状伪足形成,并损害GluR1在表面的表达,从而阻碍树突棘的形态和功能成熟。