Jubelin Gregory, Vianney Anne, Beloin Christophe, Ghigo Jean-Marc, Lazzaroni Jean-Claude, Lejeune Philippe, Dorel Corinne
Unité de Microbiologie et Génétique Composante INSA, Villeurbanne, France.
J Bacteriol. 2005 Mar;187(6):2038-49. doi: 10.1128/JB.187.6.2038-2049.2005.
Curli fibers could be described as a virulence factor able to confer adherence properties to both abiotic and eukaryotic surfaces. The ability to adapt rapidly to changing environmental conditions through signal transduction pathways is crucial for the growth and pathogenicity of bacteria. OmpR was shown to activate csgD expression, resulting in curli production. The CpxR regulator was shown to negatively affect curli gene expression when binding to its recognition site that overlaps the csgD OmpR-binding site. This study was undertaken to clarify how the interplay between the two regulatory proteins, OmpR and CpxR, can affect the transcription of the curli gene in response to variation of the medium osmolarity. Band-shift assays with purified CpxR proteins indicate that CpxR binds to the csgD promoter region at multiple sites that are ideally positioned to explain the csg repression activity of CpxR. To understand the physiological meaning of this in vitro molecular phenomenon, we analyzed the effects of an osmolarity shift on the two-component pathway CpxA/CpxR. We establish here that the Cpx pathway is activated at both transcriptional and posttranscriptional levels in response to a high osmolarity medium and that CpxR represses csgD expression in high-salt-content medium, resulting in low curli production. However, csgD repression in response to high sucrose content is not mediated by CpxR but by the global regulatory protein H-NS. Therefore, multiple systems (EnvZ/OmpR, Cpx, Rcs, and H-NS) appear to be involved in sensing environmental osmolarity, leading to sophisticated regulation of the curli genes.
卷曲纤维可被描述为一种毒力因子,能够赋予细菌在非生物表面和真核生物表面的黏附特性。通过信号转导途径快速适应不断变化的环境条件的能力对于细菌的生长和致病性至关重要。研究表明,OmpR可激活csgD的表达,从而导致卷曲纤维的产生。当CpxR调节蛋白与其识别位点结合时,该位点与csgD的OmpR结合位点重叠,结果显示CpxR对卷曲纤维基因的表达具有负面影响。本研究旨在阐明两种调节蛋白OmpR和CpxR之间的相互作用如何响应培养基渗透压的变化而影响卷曲纤维基因的转录。用纯化的CpxR蛋白进行的凝胶迁移实验表明,CpxR在多个位点与csgD启动子区域结合,这些位点的位置有利于解释CpxR对csg的抑制活性。为了理解这种体外分子现象的生理学意义,我们分析了渗透压变化对双组分信号通路CpxA/CpxR的影响。我们在此确定,Cpx信号通路在转录和转录后水平均被高渗培养基激活,并且CpxR在高盐含量培养基中抑制csgD的表达,导致卷曲纤维产生减少。然而,对高蔗糖含量的响应中,csgD的抑制不是由CpxR介导的,而是由全局调节蛋白H-NS介导的。因此,多个系统(EnvZ/OmpR、Cpx、Rcs和H-NS)似乎参与了对环境渗透压的感知,从而导致对卷曲纤维基因的精细调控。