Suppr超能文献

利用二阶和四阶精确有限差分方程实现通量误差的指数收敛。I. 基本概念的介绍及其在纯扩散系统中的应用。

Attaining exponential convergence for the flux error with second- and fourth-order accurate finite-difference equations. I. Presentation of the basic concept and application to a pure diffusion system.

作者信息

Rudolph Manfred

机构信息

Chemische Fakultät, Am Steiger 3, Friedrich-Schiller-Universität, D-07743 Jena, Germany.

出版信息

J Comput Chem. 2005 Apr 30;26(6):619-32. doi: 10.1002/jcc.20200.

Abstract

It is a well-known phenomenon called superconvergence in the mathematical literature that the error level of an integral quantity can be much smaller than the magnitude of the local errors involved in the computation of this quantity. When discretizing an integrated form of Fick's second law of diffusion the local errors reflect the accuracy of individual concentration points while the integral quantity has the physical meaning of the flux. This article demonstrates how an extraordinary fast exponential convergence towards zero can be achieved for the simulated flux error on the basis of finite-difference approximations that are only second-order (Box 2 method) or fourth-order (Box 4 method) accurate as far as the level of local errors is concerned.

摘要

在数学文献中,有一个被称为超收敛的著名现象,即一个积分量的误差水平可能比计算该量时所涉及的局部误差的大小小得多。在离散菲克第二扩散定律的积分形式时,局部误差反映了各个浓度点的精度,而积分量具有通量的物理意义。本文展示了,就局部误差水平而言,基于仅为二阶精度的有限差分近似(盒式2方法)或四阶精度的有限差分近似(盒式4方法),如何能使模拟通量误差实现向零的异常快速指数收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验