Suppr超能文献

通过[3+2]机制,配体辅助分子氢还原四氧化锇。

Ligand-assisted reduction of osmium tetroxide with molecular hydrogen via a [3+2] mechanism.

作者信息

Dehestani Ahmad, Lam Wai Han, Hrovat David A, Davidson Ernest R, Borden Weston Thatcher, Mayer James M

机构信息

Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA.

出版信息

J Am Chem Soc. 2005 Mar 16;127(10):3423-32. doi: 10.1021/ja043777r.

Abstract

Osmium tetroxide is reduced by molecular hydrogen in the presence of ligands in both polar and nonpolar solvents. In CHCl3 containing pyridine (py) or 1,10-phenanthroline (phen), OsO4 is reduced by H2 to the known Os(VI) dimers L2Os(O)2(mu-O)2Os(O)2L2 (L2 = py2, phen). However, in the absence of ligands in CHCl3 and other nonpolar solvents, OsO4 is unreactive toward H2 over a week at ambient temperatures. In basic aqueous media, H2 reduces OsO4(OH)n(n-) (n = 0, 1, 2) to the isolable Os(VI) complex, OsO2(OH)4(2-), at rates close to that found in py/CHCl3. Depending on the pH, the aqueous reactions are exergonic by deltaG = -20 to -27 kcal mol(-1), based on electrochemical data. The second-order rate constants for the aqueous reactions are larger as the number of coordinated hydroxide ligands increases, k(OsO4) = 1.6(2) x 10(-2) M(-1) s(-1) < k(OsO4(OH)-) = 3.8(4) x 10(-2) M(-1) s(-1) < k(OsO4(OH)2(2-)) = 3.8(4) x 10(-1) M(-1) s(-1). The observation of primary deuterium kinetic isotope effects, k(H2)/k(D2) = 3.1(3) for OsO4 and 3.6(4) for OsO4(OH)-, indicates that the rate-determining step in each case involves H-H bond cleavage. Density functional calculations and thermochemical arguments favor a concerted [3+2] addition of H2 across two oxo groups of OsO4(L)n and argue against H* or H- abstraction from H2 or [2+2] addition of H2 across one Os=O bond. The [3+2] mechanism is analogous to that of alkene addition to OsO4(L)n to form diolates, for which acceleration by added ligands has been extensively documented. The observation that ligands also accelerate H2 addition to OsO4(L)n highlights the analogy between these two reactions.

摘要

在极性和非极性溶剂中,在配体存在的情况下,四氧化锇可被分子氢还原。在含有吡啶(py)或1,10 - 菲咯啉(phen)的氯仿中,OsO₄被H₂还原为已知的Os(VI)二聚体L₂Os(O)₂(μ - O)₂Os(O)₂L₂(L₂ = py₂,phen)。然而,在氯仿和其他非极性溶剂中不存在配体时,在环境温度下,OsO₄在一周内对H₂无反应。在碱性水介质中,H₂将OsO₄(OH)ₙⁿ⁻(n = 0, 1, 2)还原为可分离的Os(VI)配合物OsO₂(OH)₄²⁻,反应速率与在py/CHCl₃中的速率相近。根据电化学数据,取决于pH值,水相反应的吉布斯自由能变化为ΔG = -20至-27 kcal mol⁻¹。随着配位氢氧根配体数量的增加,水相反应的二级速率常数增大,k(OsO₄) = 1.6(2)×10⁻² M⁻¹ s⁻¹ < k(OsO₄(OH)⁻) = 3.8(4)×10⁻² M⁻¹ s⁻¹ < k(OsO₄(OH)₂²⁻) = 3.8(4)×10⁻¹ M⁻¹ s⁻¹。对初级氘动力学同位素效应的观察,OsO₄的k(H₂)/k(D₂) = 3.1(3),OsO₄(OH)⁻的k(H₂)/k(D₂) = 3.6(4),表明在每种情况下,速率决定步骤都涉及H - H键的断裂。密度泛函计算和热化学论证支持H₂通过[3 + 2]协同加成到OsO₄(L)ₙ的两个氧代基团上,并反对从H₂中夺取H*或H⁻或H₂通过[2 + 2]加成到一个Os = O键上。[3 + 2]机理类似于烯烃加成到OsO₄(L)ₙ形成二醇盐的机理,对于后者,添加配体的加速作用已有大量文献记载。配体也能加速H₂加成到OsO₄(L)ₙ这一观察结果突出了这两个反应之间的相似性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验