Suppr超能文献

利用数据网格架构进行临床图像数据的备份与恢复。

Utilizing data grid architecture for the backup and recovery of clinical image data.

作者信息

Liu Brent J, Zhou M Z, Documet J

机构信息

Image Processing and Informatics Laboratory, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Comput Med Imaging Graph. 2005 Mar-Apr;29(2-3):95-102. doi: 10.1016/j.compmedimag.2004.09.004. Epub 2005 Jan 11.

Abstract

Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models. However, there has been limited investigation into the impact of this emerging technology in medical imaging and informatics. In particular, PACS technology, an established clinical image repository system, while having matured significantly during the past ten years, still remains weak in the area of clinical image data backup. Current solutions are expensive or time consuming and the technology is far from foolproof. Many large-scale PACS archive systems still encounter downtime for hours or days, which has the critical effect of crippling daily clinical operations. In this paper, a review of current backup solutions will be presented along with a brief introduction to grid technology. Finally, research and development utilizing the grid architecture for the recovery of clinical image data, in particular, PACS image data, will be presented. The focus of this paper is centered on applying a grid computing architecture to a DICOM environment since DICOM has become the standard for clinical image data and PACS utilizes this standard. A federation of PACS can be created allowing a failed PACS archive to recover its image data from others in the federation in a seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid is composed of one research laboratory and two clinical sites. The Globus 3.0 Toolkit (Co-developed by the Argonne National Laboratory and Information Sciences Institute, USC) for developing the core and user level middleware is utilized to achieve grid connectivity. The successful implementation and evaluation of utilizing data grid architecture for clinical PACS data backup and recovery will provide an understanding of the methodology for using Data Grid in clinical image data backup for PACS, as well as establishment of benchmarks for performance from future grid technology improvements. In addition, the testbed can serve as a road map for expanded research into large enterprise and federation level data grids to guarantee CA (Continuous Availability, 99.999% up time) in a variety of medical data archiving, retrieval, and distribution scenarios.

摘要

网格计算代表了从并行、对等和客户端-服务器模型等常见领域发展而来的最新且最令人兴奋的技术。然而,对于这项新兴技术在医学成像和信息学中的影响,相关研究还很有限。特别是,PACS技术作为一种成熟的临床图像存储系统,尽管在过去十年中有了显著发展,但在临床图像数据备份方面仍然较为薄弱。当前的解决方案要么成本高昂,要么耗时费力,而且技术远非万无一失。许多大型PACS存档系统仍会出现数小时甚至数天的停机时间,这对日常临床操作产生了严重影响。本文将对当前的备份解决方案进行综述,并简要介绍网格技术。最后,将展示利用网格架构进行临床图像数据恢复,特别是PACS图像数据恢复的研究与开发。本文的重点是将网格计算架构应用于DICOM环境,因为DICOM已成为临床图像数据的标准,而PACS则采用了这一标准。可以创建一个PACS联盟,使出现故障的PACS存档能够无缝地从联盟中的其他存档恢复其图像数据。该设计反映了网格计算的五层架构:结构层、资源层、连接层、聚集层和应用层。测试平台数据网格由一个研究实验室和两个临床站点组成。利用Globus 3.0工具包(由阿贡国家实验室和南加州大学信息科学研究所共同开发)来开发核心和用户级中间件,以实现网格连接。成功实施并评估利用数据网格架构进行临床PACS数据备份和恢复,将有助于理解在临床图像数据备份中使用数据网格的方法,以及为未来网格技术改进建立性能基准。此外,该测试平台可作为路线图,用于扩大对大型企业和联盟级数据网格的研究,以确保在各种医学数据存档、检索和分发场景中实现连续可用性(99.999%的正常运行时间)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验