Harikumar Kaleeckal G, Miller Laurence J
Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA.
J Biol Chem. 2005 May 13;280(19):18631-5. doi: 10.1074/jbc.M410834200. Epub 2005 Mar 9.
Changes in receptor conformation are believed to be key for ligand-induced regulation of cellular signaling cascades. However, little information exists about specific conformations of a receptor. We recently applied fluorescence resonance energy transfer to determine distances from distinct points distributed over the surface and within the helical bundle of the cholecystokinin receptor to the amino terminus of a full agonist CCK analogue (Harikumar, K. G., Pinon, D. I., Wessels, W. S., Dawson, E. S., Lybrand, T. P., Prendergast, F. G., and Miller, L. J. (2004) Mol. Pharmacol. 65, 28-35). Here, we apply the same experimental strategy to determine distances from the same receptor positions to an analogous point at the amino terminus of structurally related partial agonist (Alexa488-Gly-[(Nle(28,31))CCK-26-32]phenethyl ester) and antagonist (Alexa488-Gly-[(D-Trp31, Nle(28,31))CCK-26-32]phenethyl ester) ligands. A high degree of spectral overlap and fluorescence transfer was observed for ligand-occupied fluorescent-tagged receptors with no transfer observed for the ligand-occupied pseudo-wild type null cysteine-reactive mutant receptor (C94S). For the partial agonist, calculated distances to receptor positions 94, 102, 204, and 341, representing sites within the helical confluence, and the first, second, and third loops, were 21 +/- 0.4, 18 +/- 0.4, 25 +/- 1, and 17 +/- 1 angstroms, not different from those measured previously for the analogous full agonist. For the antagonist, the analogous distances were 21 +/- 2, 28 +/- 2, 15 +/- 1 and 21 +/- 1 angstroms. Distances to the first and third loops were longer and the distance to the second loop was shorter for the antagonist relative to both the full and partial agonist probes, whereas all three probes demonstrated similar distances to the intrahelical reference point. This supports the possibilities of changes in the conformation of the probe and/or the receptor induced by structurally similar ligands having distinct intrinsic biological activities.
受体构象的变化被认为是配体诱导细胞信号级联调节的关键。然而,关于受体的特定构象的信息却很少。我们最近应用荧光共振能量转移来确定从分布在胆囊收缩素受体表面和螺旋束内的不同点到全激动剂CCK类似物氨基末端的距离(哈里库马尔,K.G.,皮农,D.I.,韦塞尔,W.S.,道森,E.S.,莱布兰德,T.P.,普伦德加斯特,F.G.,和米勒,L.J.(2004年)《分子药理学》65卷,28 - 35页)。在这里,我们应用相同的实验策略来确定从相同的受体位置到结构相关的部分激动剂(Alexa488 - Gly - [(Nle(28,31))CCK - 26 - 32]苯乙酯)和拮抗剂(Alexa488 - Gly - [(D - Trp31, Nle(28,31))CCK - 26 - 32]苯乙酯)配体氨基末端类似点的距离。对于被配体占据的荧光标记受体,观察到高度的光谱重叠和荧光转移,而对于被配体占据的假野生型无半胱氨酸反应性突变受体(C94S)则未观察到转移。对于部分激动剂,计算得到的到代表螺旋交汇处、第一、第二和第三环内位点的受体位置94、102、204和341的距离分别为21±0.4、18±0.4、25±1和17±1埃,与先前测量的类似全激动剂的距离没有差异。对于拮抗剂,类似的距离分别为21±2、28±2、15±1和21±1埃。相对于全激动剂和部分激动剂探针,拮抗剂到第一和第三环的距离更长,到第二环的距离更短,而所有三种探针到螺旋内参考点的距离相似。这支持了具有不同内在生物学活性的结构相似配体诱导探针和/或受体构象变化的可能性。