Suppr超能文献

在块迭代或有序子集重建算法中选择参数。

Choosing parameters in block-iterative or ordered subset reconstruction algorithms.

作者信息

Byrne Charles

机构信息

Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.

出版信息

IEEE Trans Image Process. 2005 Mar;14(3):321-7. doi: 10.1109/tip.2004.841193.

Abstract

Viewed abstractly, all the algorithms considered here are designed to provide a nonnegative solution x to the system of linear equations y = Px, where y is a vector with positive entries and P a matrix whose entries are nonnegative and with no purely zero columns. The expectation maximization maximum likelihood method, as it occurs in emission tomography, and the simultaneous multiplicative algebraic reconstruction technique are slow to converge on large data sets; accelerating convergence through the use of block-iterative or ordered subset versions of these algorithms is a topic of considerable interest. These block-iterative versions involve relaxation and normalization parameters, the correct selection of which may not be obvious to all users. The algorithms are not faster merely by virtue of being block-iterative; the correct choice of the parameters is crucial. Through a detailed discussion of the theoretical foundations of these methods, we come to a better understanding of the precise roles these parameters play.

摘要

抽象地看,这里所考虑的所有算法都是为了给线性方程组(y = Px)提供一个非负解(x),其中(y)是一个元素为正的向量,(P)是一个元素非负且没有纯零列的矩阵。在发射断层扫描中出现的期望最大化最大似然法以及同时乘法代数重建技术在处理大数据集时收敛速度较慢;通过使用这些算法的块迭代或有序子集版本来加速收敛是一个备受关注的话题。这些块迭代版本涉及松弛和归一化参数,并非所有用户都能轻易正确选择这些参数。这些算法并非仅仅因为是块迭代就更快;参数的正确选择至关重要。通过对这些方法的理论基础进行详细讨论,我们能更好地理解这些参数所起的精确作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验